Today's topics and news

- Topic: Power series, Taylor series

Homework for Friday: Watch videos 14.11-14.14

Approximating functions

Which one of the following functions is a better approximation for $F(x)=e^{x}$ near 0 ?
(0) $f(x)=1+x+\frac{x^{2}}{2}$
(2) $g(x)=\sin x+\cos x+x^{2}$
(0) $h(x)=e^{-x}+2 x$

An explicit equation for Taylor polynomials

(1) Find a polynomial P of degree 3 that satisfies

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(2) Find all polynomials P that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(3) Find a polynomial P of smallest possible degree that satisfies

$$
P(0)=A, \quad P^{\prime}(0)=B, \quad P^{\prime \prime}(0)=C, \quad P^{\prime \prime \prime}(0)=D
$$

(9) Find an explicit formula for the 3-rd Taylor polynomial for a C^{3} function f at 0 .
(5) Find an explicit formula for the n-th Taylor polynomial for a C^{n} function f at 0 .

Interval of convergence

Write the Maclaurin series for the following functions

$$
f(x)=e^{x}, \quad g(x)=\sin x, \quad h(x)=\cos x
$$

Compute the interval of convergence of each of these three series.

Taylor series not at 0

Write the Taylor series...
(1) for $f(x)=e^{x}$ at $a=2$
(2) for $g(x)=\sin x$ at $a=\frac{\pi}{4}$

- for $H(x)=\frac{1}{x}$ at $a=3$

You can do these problems in two ways:

- Method 1: Use the substitution $u=x-a$ and reduce it to an old problem (without computing any derivative).
- Method 2: Compute the first few derivatives, guess the pattern (and prove it by induction).

Taylor polynomial of a polynomial

(1) Let $f(x)=x^{3}+x^{2}$

Write the 2nd Taylor polynomial P_{2} for f at 0
(2) Write the Taylor series for f at 0 .
(Write the 2nd Taylor polynomial for f at 1 .

- Write the 3rd Taylor polynomial for f at 1 .

Taylor Series

Taylor Series: For C^{∞} functions

Let $a \in \mathbb{R}$. For C^{∞} functions $f(x)$,
$S(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ is the Taylor series of f centred a.
One of the reasons why we want to look at the Taylor series is in the hope that it would nicely approximate the function $f(x)$ near a. This is not always the case. We say

Analyticity

A function f is analytic at a iff, $S_{a}(x)$, the Taylor series expansion of f around a converges to $f(x)$ in a neighbourhood of a.
A function f is analytic on some set D iff $\forall a \in D$, it's analytic at a.
Example: We have shown that $f(x)=\frac{1}{1-x}$ is analytic at 0 .

A pathological example

Consider the function $f(x)$ defined as follows:

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ e^{\frac{-1}{x^{2}}} & \text { if } x \neq 0\end{cases}
$$

One can show that this function is C^{∞} and $f^{(k)}(0)=0$ $\forall k \in \mathbb{N}$.

1. Does this function have a Taylor polynomial of order 9 around 0 ?
2. Does this function have a Taylor Series around 0?
3. Is this function analytic?

Taylor series centred at $x=1$

Write the Taylor series for $\frac{1}{1-x}$ centred around 0.5 .
What is the interval of convergence of this Taylor series?
Does it converge to $\frac{1}{1-x}$ on that interval?
Is $\frac{1}{1-x}$ analytic at 0.5 ?

Lagrange's Remainder Theorem

Lagrange's Remainder Theorem

Suppose f is C^{n+1} on some interval \mathbb{I} containing a.
Let P_{n} be the $n^{\text {th }}$ Taylor Polynomial of f at a.
Consider $R_{n}(x)=f(x)-P_{n}(x)$ the remainder,
then for any $x \in \mathbb{I}$, there exists ξ between a and x s.t.

$$
R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

Notice that ξ depends on n and x.

Proving a function is analytic

We will now show that $\sin (x)$ is analytic on \mathbb{R}. To show a function f is analytic on some D we need to show that f is analytic on each point $a \in \mathbb{D}$. This in turn means that the Taylor series of f centred at a converges to f in a small neighbourhood of a.

We will call $S_{a}(x)$ the Taylor series for $\sin (x)$ centred around a. We will call $P_{n, a}(x)$ the $n^{\text {th }}$ Taylor polynomial for $\sin (x)$ centred around a.

1. We will show that for any $a, x \in \mathbb{R}, S_{a}(x)$ converges to $\sin (x)$. In other words, the small neighbourhood around each a for which S_{a} converges to f can in fact be taken to be all of \mathbb{R}. Use Lagrange's Theorem to write down an expression for the remainder $R_{n, a}(x)=f(x)-P_{n, a}(x)$
2. Show that $\lim _{n \rightarrow \infty} R_{n, a}(x)=0$.

This of course means $\sin (x)$ is analytic on \mathbb{R}.

Taylor series gymnastics

Write the following functions in a way where you can easily find their Maclaurin series using series you already know.

- $f(x)=\frac{x^{2}}{1+x}$
(2) $f(x)=\left(e^{x}\right)^{2}$
- $f(x)=\sin \left(2 x^{3}\right)$
- $f(x)=\cos ^{2} x$
- $f(x)=\ln \frac{1+x}{1-x}$
- $f(x)=\frac{1}{\left(1+x^{2}\right)(1+x)}$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

Arctan

(1) Write the function

$$
f(x)=\arctan x
$$

as a power series centered at 0 .
Hint: Compute the first derivative. Then stop to think.
(2) What is $f^{(2019)}(0)$?

