Today's topics and news

- Topic: Absolute convergence, ratio test, power series
- Homework for Wednesday: Watch videos 14.5 14.10
- Homework for Friday: Watch videos 14.11-14.14

Positive and negative terms

- Let $\sum a_{n}$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

IF $\sum($ P.T. $)$ is...	AND $\sum($ N.T. $)$ is...	THEN $\sum a_{n}$ may be...
CONV	CONV	
∞	CONV	
CONV	$-\infty$	
∞	$-\infty$	

Positive and negative terms

- Let $\sum a_{n}$ be a series.
- Call \sum (P.T.) the sum of only the positive terms of the same series.
- Call \sum (N.T.) the sum of only the negative terms of the same series.

	$\sum($ P.T.) may be...	$\sum($ N.T. $)$ may be...
In general		
If $\sum a_{n}$ is CONV		
If $\sum\left\|a_{n}\right\|$ is CONV		
If $\sum a_{n}$ is ABS CONV		
If $\sum a_{n}$ is COND CONV		
If $\sum a_{n}=\infty$		
If $\sum a_{n}$ is DIV (not to ∞ or $-\infty$)		
Qin Deng	Mugust 2,2019 Lecture 10	$3 / 14$

The inconclusive case of the ratio test

Show the ratio test is inconclusive when $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$.

Ratio test: Convergent or divergent?

Use Ratio test to decide which series are convergent:
(1) $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
(2) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!^{2} 3^{n+1}}$

- $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
(4) $\sum_{n=2}^{\infty} \frac{n!}{n^{n}}$

Root test

Here is a new convergence test.

Theorem

Let $\sum_{n} a_{n}$ be a series. Assume the limit $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists.

- IF $0 \leq L<1$ THEN the series is ???
- IF $L>1$ THEN the series is ???

Without writing an actual proof, guess the conclusion of the theorem and argue why it makes sense.

Hint: Imitate the explanation on Video 13.18 for the Ration Test. For large values of n, what can you compare $\left|a_{n}\right|$ to? Think about the simplest series $\sum_{n} b_{n}$ s.t. $\lim _{n \rightarrow \infty}\left|b_{n}\right|^{\frac{1}{n}}=L$.

Power Series

A power series is a series (dependent on some variable, ex. x) of the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

In this form, we say the power series is centred at a.
A power series isn't actually a series because the terms aren't numbers. However, if I plug in a specific number for x, then it becomes a genuine series. Notice a power series always converges to c_{0} if I plug in $x=a$.

Depending on what x you plug in, the power series might be convergent or divergent. On the x-values where the power series converges, you can think of the power series as representing some function $f(x)$.

Geometric series

Example: Consider the geometric power series $\sum_{n=0}^{\infty} x^{n}$. It converges iff $|x|<1$. On this interval, the power series as a function is equal to the the function $\frac{1}{1-x}$.

Interval of convergence

Find the interval of convergence of each power series:

- $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
- $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n^{2} 2^{2 n+1}}$
- $\sum_{n=1}^{\infty} \frac{n^{n}}{42^{n}} x^{n}$
- (Hard!) $\sum_{n=0}^{\infty} \frac{(3 n)!}{n!(2 n)!} x^{n}$

What can you conclude?

Think of the power series $\sum_{n} a_{n} x^{n}$. Do not assume $a_{n} \geq 0$. In each case, may the given series be absolutely convergent (AC)? conditionally convergent (CC)? divergent (D)? all of them?

IF	$\sum_{n} a_{n} 3^{n}$ is \ldots	AC	CC	D
THEN	$\sum_{n} a_{n} 2^{n}$ may be \ldots	$? ? ?$	$? ? ?$	$? ? ?$
	$\sum_{n} a_{n}(-3)^{n}$ may be ...	$? ? ?$	$? ? ?$	$? ? ?$
	$\sum_{n} a_{n} 4^{n}$ may be ...	???	$? ? ?$	$? ? ?$

Writing functions as power series

Using the geometric series, we know how to write the function $F(x)=\frac{1}{1-x}$ as a power series centered at 0 :

$$
F(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }|x|<1
$$

Write these functions as power series centered at 0 :
(1) $f(x)=\frac{1}{1+x}$

- $h(x)=\frac{1}{2-x}$
(2) $g(x)=\frac{1}{1-x^{2}}$
- $G(x)=\ln (1+x)$

The definitions of Taylor polynomial

Let f be a function defined at and near $a \in \mathbb{R}$. Let $n \in \mathbb{N}$.
Let P_{n} be the n-th Taylor polynomial for f at a.
Which ones of these is true?
(1) P_{n} is an approximation for f of order n near a.
(2) f is an approximation for P_{n} of order n near a.
(3) $\lim _{x \rightarrow a}\left[f(x)-P_{n}(x)\right]=0$
(9) $\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0$
(5) \exists a function R_{n} s.t. $f(x)=P_{n}(x)+R_{n}(x)$ and $\lim _{x \rightarrow a} \frac{R_{n}(x)}{(x-a)^{n}}=0$
(0) $f^{(n)}(a)=P_{n}^{(n)}(a)$
(3) $\forall k=0,1,2, \ldots, n, \quad f^{(k)}(a)=P_{n}^{(k)}(a)$
(8) If x is close to a, then $f(x)=P_{n}(x)$.

Approximating functions

Which one of the following functions is a better approximation for $F(x)=e^{x}$ near 0 ?
(1) $f(x)=1+x+\frac{x^{2}}{2}$
(2) $g(x)=\sin x+\cos x+x^{2}$
(0) $h(x)=e^{-x}+2 x$

An explicit equation for Taylor polynomials

(1) Find a polynomial P of degree 3 that satisfies

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(2) Find all polynomials P that satisfy

$$
P(0)=1, \quad P^{\prime}(0)=5, \quad P^{\prime \prime}(0)=3, \quad P^{\prime \prime \prime}(0)=-7
$$

(3) Find a polynomial P of smallest possible degree that satisfies

$$
P(0)=A, \quad P^{\prime}(0)=B, \quad P^{\prime \prime}(0)=C, \quad P^{\prime \prime \prime}(0)=D
$$

(9) Find an explicit formula for the 3-rd Taylor polynomial for a function f at 0 .
(5) Find an explicit formula for the n-th Taylor polynomial for a function f at 0 .

