
Today’s topics and news

Topics: Ratio test, power Series

Homework: Watch video 14.5 - 14.10
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Converge or diverge?

Do the following series diverge or converge?

1.
∞∑
n=2

1
n(ln(n))p where p > 0

2.
∞∑
n=1

2n

3n−1

3.
∞∑
n=0

cos(πn)
n!

4.
∞∑
n=1

( n
n+1)n

5.
∞∑

n=100

ln(n)
n2

6.
∞∑
n=1

sin(n)
n2
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The ratio test

Given a series
∞∑
n=0

an such that .

Assume the limit exists or is ∞.

1.

2.

3.

The intuition of the ratio test comes from the geometric series. In fact, the
proof of the test comes from limit comparison to the the geometric series.
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The ratio test

Show that if lim
n→∞

|an+1|
|an| = 1, then you cannot conclude anything about the

series (i.e. the test is inconclusive).
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Power Series

A power series is a series (dependent on some variable, ex. x) of the form
∞∑
n=0

an(x − a)n

In this form, we say the power series is centred at a.

A power series isn’t actually a series because the terms aren’t numbers.
However, if I were to plug in a specific number for x , then it becomes a
genuine series. Notice a power series always converges to a0 if I plug in
x = a.

Depending on what x you plug in, the power series might be convergent or
divergent. On the x-values where the power series converges, you can
think of the power series as representing some function f (x).
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Geometric series

Example: Consider the geometric power series
∞∑
n=0

xn. It converges iff

|x | < 1. On this interval, the power series as a function is equal to the the
function 1

1−x .
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New power series from geometric series

Write the power series the following functions and state the interval of
convergence.

1. 1
1+x .

2. 1
1−4x2 .

3. 1
2−x .

4. ln(1 + x).

5. 1
(1−x)2 .

6. arctan(x).
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Interval of convergence

Find the interval of convergence of the following series.

1.
∞∑
n=1

(−1)n√
n
xn

2.
∞∑
n=1

2n

(2n)!x
n

3.
∞∑
n=1

n2

2n (x − 1)n

4.
∞∑
n=1

1
n2n x

2n.
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Examples

Given a series which has a radius of convergence of 1, converges on
(−1, 1) and satisfies the following extra conditions. If this is impossible,
explain why.

1. AC at -1 and AC at 1.
2. AC at -1 and CC at 1.
3. AC at -1 and D at 1.
4. CC at -1 and AC at 1.
5. CC at -1 and CC at 1.
6. CC at -1 and D at 1.
7. D at -1 and AC at 1.
8. D at -1 and CC at 1.
9. D at -1 and D at 1.

Qin Deng MAT137 Lecture 22 August 3, 2018 9 / 10



Examples

1. Give a series which has a radius of convergence of ∞.

2. Give a series which has a radius of convergence of 0.
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