Today's topics and news

Topics: Series tests

Today's topics and news

Topics: Series tests

Homework: Watch video 13.18 - 13.19, 14.1 - 14.4

True or false

- Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}$ be its partial sum sequence.
- 10. If $\lim_{n\to\infty} S_{2n}$ exists, then $\sum_{n=0}^{\infty} a_n$ converges.
- 11. If $\lim_{n\to\infty} S_{2n}$ exists and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=0}^{\infty} a_n$ converges.
- 12. If $\sum_{n=0}^{\infty} a_n$ converges, then $\lim_{k \to \infty} (\sum_{n=k}^{\infty} a_n) = 0$.
- 13. If $\sum_{n=0}^{\infty} a_{2n}$ converges and $\sum_{n=0}^{\infty} a_{2n+1}$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.

True or false

- Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}$ be its partial sum sequence.
- 10. If $\lim_{n\to\infty} S_{2n}$ exists, then $\sum_{n=0}^{\infty} a_n$ converges. False.
- 11. If $\lim_{n\to\infty} S_{2n}$ exists and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=0}^{\infty} a_n$ converges. True.
- 12. If $\sum\limits_{n=0}^{\infty}a_n$ converges, then $\lim\limits_{k\to\infty}\bigl(\sum\limits_{n=k}^{\infty}a_n\bigr)=0$. True.
- 13. If $\sum_{n=0}^{\infty} a_{2n}$ converges and $\sum_{n=0}^{\infty} a_{2n+1}$ converges, then $\sum_{n=0}^{\infty} a_n$ converges. True.

4 ロ ト 4 個 ト 4 種 ト 4 種 ト ■ り 9 0 0 0

Relationship between series and type 1 improper integrals

As has been hinted at several times, series can be thought of as a discrete analag of type 1 integrals. As such, lots of the same tests that work for one will work for the other.

For both the convergence of the series and the type 1 integral, it's not enough that the terms a_n or the integrand f(x) to converge to 0 as n or $x \to \infty$. It matters how quickly they are going to 0.

BCT

Basic Comparison Test for Type 1 improper integrals

Given f, g continuous on $[0, \infty)$,

suppose $\forall x \in [0, \infty) \ 0 \le f(x) \le g(x)$,

then $\int_0^\infty g(x)dx$ converges $\implies \int_0^\infty f(x)dx$ converges.

Basic Comparison Test for series

Given $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$,

suppose $\forall n \in \mathbb{N}, \ 0 \leq a_n \leq b_n$,

then $\sum_{n=0}^{\infty} b_n$ converges $\implies \sum_{n=0}^{\infty} a_n$ converges.

Qin Deng MAT137 Lec

LCT

Similarly, we have LCT for series:

Basic Comparison Test for series

Given the postive series $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$,

suppose $\lim_{n \to \infty} \frac{a_n}{b_n}$ is a positive real number (i.e. $0 < L < \infty$),

then $\sum_{n=0}^{\infty} b_n$ converges $\iff \sum_{n=0}^{\infty} a_n$ converges.

Just like for improper integrals we have extensions to the LCT.

Converge or diverge?

Consider the positive series $\sum_{n=0}^{\infty} a_n$ and suppose $\lim_{n\to\infty} (n!)a_n = 0$. Does

 $\sum_{n=0}^{\infty} a_n$ necessarily converge?

Suppose instead $\lim_{n\to\infty} na_n = 0$. Does $\sum_{n=0}^{\infty} a_n$ necessarily converge?

Qin Deng MAT137 Lecture 21 August 1, 2018 7 / 17

Integral test

Given a continuous function f on $[0, \infty)$.

Suppose f is _____ and ____ on $[0, \infty)$,

Suppose $a_n = \underline{\hspace{1cm}}$,

then _____

Integral test

Given a continuous function f on $[0, \infty)$.

Suppose f is _____ and ____ on $[0, \infty)$,

Suppose $a_n = \underline{\hspace{1cm}}$,

then _____

Why is the integral test useful?

Integral test

Given a continuous function f on $[0, \infty)$.

Suppose f is _____ and ____ on $[0,\infty)$,

Suppose $a_n = \underline{\hspace{1cm}}$,

then _____

Why is the integral test useful?

If both converge, is it true that $\sum_{n=0}^{\infty} a_n = \int_0^{\infty} f(x) dx$?

Integral test

Given a continuous function f on $[0, \infty)$.

Suppose f is _____ and ____ on $[0,\infty)$,

Suppose $a_n = \underline{\hspace{1cm}}$,

then _____

Why is the integral test useful?

If both converge, is it true that $\sum_{n=0}^{\infty} a_n = \int_0^{\infty} f(x) dx$?

If you think back to the proof of this, how does $\sum_{n=0}^{\infty} a_n$ and $\int_0^{\infty} f(x) dx$ compare?

What about between $\sum_{n=1}^{\infty} a_n$ and $\int_0^{\infty} f(x) dx$?

Is the following still true?

Claim

Given f continuous, positive and decreasing on $[0, \infty)$, Suppose $a_n = f(n)$, then $\sum_{n=100}^{\infty} a_n$ converges iff $\int_0^{\infty} f(x) dx$ converges.

Is the following still true?

Claim

Given f continuous, positive and decreasing on $[0, \infty)$, Suppose $a_n = f(n)$, then $\sum_{n=100}^{\infty} a_n$ converges iff $\int_0^{\infty} f(x) dx$ converges.

According to the logic above, it seems that we can apply the integral test starting at different points for series and improper integral. So why is it that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges but $\int_0^{\infty} \frac{1}{x^2} dx$ diverges?

True or false: Is $\sum_{n=1}^{\infty} \sin(n)$ an alternating series?

True or false: Is $\sum_{n=1}^{\infty} \sin(n)$ an alternating series? False.

Give a definition of an alternating series.

Given a series of the form ______,

If 1. _____,

2. _____

3. _____

Then ______.

True or false: Is $\sum_{n=1}^{\infty} \sin(n)$ an alternating series? False.

Give a definition of an alternating series.

Given a series of the form ______,

If 1. _____,

2. _____

3. _____

Then ______.

The following is easily seen to be an equivalent formulation

AST

Given an alternating series $\sum_{n=0}^{\infty} a_n$,

If $|a_n|$ is decreasing and $\lim_{n\to\infty} a_n = 0$ then $\sum_{n=0}^{\infty} a_n$ converges.

The following is easily seen to be an equivalent formulation

AST

Given an alternating series $\sum_{n=0}^{\infty} a_n$,

If $|a_n|$ is decreasing and $\lim_{n\to\infty} a_n = 0$ then $\sum_{n=0}^{\infty} a_n$ converges.

Estimating alternating sums

Estimate
$$S = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!}$$
 with an error smaller than 0.0001.

Qin Deng MAT137 Lecture 21 August 1, 2018 12 / 17

Exercise

We saw in PS7 that if $\sum_{n=1}^{\infty} a_n$ is a convergent, non-negative series, then

$$\sum_{n=1}^{\infty} (a_n)^2$$
 converges.

Suppose $\sum_{n=1}^{\infty} a_n$ is a convergent series.

Does $\sum_{n=1}^{\infty} (a_n)^2$ necessarily converge or diverge? Does $\sum_{n=1}^{\infty} |a_n|$ necessarily converge or diverge?

We say the series $\sum_{n=0}^{\infty} a_n$ converges absolutely iff _______.

We say the series $\sum_{n=0}^{\infty} a_n$ converges conditionally iff _______.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges, then it converges absolutely.

True or false: If $\sum_{n=0}^{\infty} a_n$ is an eventually negative series and converges, then it converges absolutely.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges absolutely, then $\sum_{n=0}^{\infty} a_n$ converges.

We say the series $\sum_{n=0}^{\infty} a_n$ converges absolutely iff _______.

We say the series $\sum_{n=0}^{\infty} a_n$ converges conditionally iff _______.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges, then it converges absolutely.

True or false: If $\sum_{n=0}^{\infty} a_n$ is an eventually negative series and converges, then it converges absolutely.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges absolutely, then $\sum_{n=0}^{\infty} a_n$ converges.

We say the series $\sum_{n=0}^{\infty} a_n$ converges absolutely iff $\sum_{n=0}^{\infty} |a_n|$ converges.

We say the series $\sum_{n=0}^{\infty} a_n$ converges conditionally iff $\sum_{n=0}^{\infty} a_n$ converges but does not absolutely converge.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges, then it converges absolutely. False.

True or false: If $\sum_{n=0}^{\infty} a_n$ is an eventually negative series and converges, then it converges absolutely. True.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges absolutely, then $\sum_{n=0}^{\infty} a_n$ converges. True.

We say the series $\sum_{n=0}^{\infty} a_n$ converges absolutely iff $\sum_{n=0}^{\infty} |a_n|$ converges.

We say the series $\sum_{n=0}^{\infty} a_n$ converges conditionally iff $\sum_{n=0}^{\infty} a_n$ converges but does not absolutely converge.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges, then it converges absolutely. False.

True or false: If $\sum_{n=0}^{\infty} a_n$ is an eventually negative series and converges, then it converges absolutely. True.

True or false: If $\sum_{n=0}^{\infty} a_n$ converges absolutely, then $\sum_{n=0}^{\infty} a_n$ converges. True.

Positive and negative terms

Let $\sum a_n$ be a series and let b_n be the positive terms (i.e. for each $n \in \mathbb{N}$, $b_n = 0$ if $a_n \le 0$ and $b_n = a_n$ if $a_n > 0$). Similarly define c_n to be the negative terms.

For each scenario describe the convergence of $\sum_{n=0}^{\infty} a_n$.

- 1. $\sum_{n=0}^{\infty} b_n$ conv and $\sum_{n=0}^{\infty} c_n$ conv. 2. $\sum_{n=0}^{\infty} b_n$ div and $\sum_{n=0}^{\infty} c_n$ conv.
- 3. $\sum_{n=0}^{\infty} b_n \text{ conv and } \sum_{n=0}^{\infty} c_n \text{ div.}$ 3. $\sum_{n=0}^{\infty} b_n \text{ div and } \sum_{n=0}^{\infty} c_n \text{ div.}$

Converge or diverge?

Do the following series diverge or converge?

1.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^p}$$
 where $p > 0$

2.
$$\sum_{n=1}^{\infty} \frac{2^n}{3^n-1}$$

$$3. \sum_{n=0}^{\infty} \frac{\cos(\pi n)}{n!}$$

$$4. \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$$

5.
$$\sum_{n=100}^{\infty} \frac{\ln(n)}{n^2}$$

6.
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

