Today's topics and news

- Topics: Integrability, Riemann integrals and indefinite integrals
- Homework: Watch videos 8.3-8.7, 9.1 (9.2-9.4)

Joining Parititons

Let P and Q be two partitions of the $[a, b]$. Assume

1. $L_{P}(f)=2$
2. $U_{P}(f)=6$
3. $L_{Q}(f)=3$
4. $U_{Q}(f)=8$
5. Does $P \subseteq Q$?
6. Does $Q \subseteq Q$?
7. Bound $L_{P \cup Q}(f)$ and $U_{P \cup Q}(f)$.

ϵ-reformulation of integrability

ϵ-reformulation of integrability

Given a bounded function f on $[a, b]$,
f is integrable on $[a, b]$ iff $\forall \epsilon>0, \exists P$ partition of $[a, b]$ s.t.
$U_{P}(f)-L_{P}(f)<\epsilon$.
Proof of \rightarrow :
Suppose f is integrable on $[a, b]$, given $\epsilon>0$,

1. Is it true that are two possibly different partitions P_{1} and P_{2} satisfying $U_{P_{1}}(f)-L_{P_{2}}(f)<\epsilon$?
2. How can you come with a single partition which will satisfy $U_{P}(f)-L_{P}(f)<\epsilon$?
Proof of \leftarrow :
Suppose for $\epsilon>0, \exists P$ partition of $[a, b]$ s.t. $U_{P}(f)-L_{P}(f)<\epsilon$.
3. Write down the relationship between $U_{P}(f), L_{P}(f), \overline{l_{a}^{b}}(f)$ and $\underline{l}_{a}^{b}(f)$
4. If $U_{P}(f)-L_{P}(f)<\epsilon$, what can you say about $\overline{l_{a}^{b}}(f)-\underline{I}_{a}^{b}(f)$?

Example: Warm-up

Consider

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { if } 0<x \leq 1\end{cases}
$$

1. Let $P=\{0,0.1,0.5,1\}$, what is $L_{P}(f)$? $U_{P}(f)$?
2. For an arbitrary partition $P=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$, what is $L_{P}(f) ? U_{P}(f)$?
3. Find a partition so that $L_{P}(f)=0.99999$.
4. What is $\overline{I_{0}^{1}}(f)$? $I_{0}^{1}(f)$?
5. Is f integrable on $[0,1]$?

Example: Warm-up

Consider

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 2 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Consider f on the interval $[0,1]$,

1. Let $P=\{0,0.1,0.5,1\}$, what is $L_{P}(f)$? $U_{P}(f)$?
2. For any $P=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$, the lower sum $L(f, P)$ is equal to $L(h, P)$ for some simpler function h, what is that function? 3. What is $\underline{I}_{b}^{a}(f)$?

Riemann sums

A Riemann partition is a partition where the subintervals are all the same size. A Riemann partition for an interval $[a, b]$ is determined completely by n, the number of intervals it divides $[a, b]$ into. Let P_{n} be the Riemann partition of $[a, b]$ dividing $[a, b]$ into n subintervals, what is P_{n} ?

Given a bounded function f on $[a, b]$ and a positive integer n, we define the n - th right Riemann sum of f on $[a, b]$ to be,
$R_{n}(f)=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$, where
$x_{k}=a+k \frac{b-a}{n}$ and $\Delta x=\frac{b-a}{n}$.
The right Riemann sum is a type of Riemann sum, where you choose to use the y-value over the right endpoint of subintervals as the height of your rectangles. You can similarly define left Riemann sums ($L_{n}(f)$, don't get notations mixed up with $L_{P}(f)$, the lower sum), midpoint Riemann sums $\left(M_{n}(f)\right)$ etc.

Integrability

It is often tedious to check integrability from the definition or $\epsilon-$ reformulation. With some work one can prove integrability for a large class of functions.

Integrability condition

If f is continuous on $[a, b]$, then it is integrable on $[a, b]$.
Note the implication does not go the other way. (See first example)

Norm of a partition

Given a partition $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$, The norm of the partition $\|P\|=\max \left\{x_{i}-x_{i-1}: i=1 \ldots n\right\}$.

Integral as a limit

If f is integrable on $[a, b]$ and we have a sequence of parittions $\left\{P_{k}\right\}_{k=1}^{\infty}$
s.t. $\lim _{k \rightarrow \infty} P_{k}=0$, then $\int_{a}^{b} f(x) d x=\lim _{k \rightarrow \infty} U_{P_{k}}(f)=\lim _{k \rightarrow \infty} L_{P_{k}}(f)$.

Computing integrals before FTC

Consider $f(x)=x^{2}$,

1. $f(x)$ is integrable on $[0,1]$. Why? (Note: You can prove integrability using ϵ - reformulation, this is because $U_{P}(f)-L_{P}(f)$ has a particularly nice expression in this example for certain partitions.)
2. Write down the definition of $R_{n}(f)$ on $[0,1]$, find a simple formula for it without the \sum_{1} symbol using summation formulas.
3. What is $\int_{0} x^{2} d x$?

Integral Properties

See Video 7.12 for a list.
Given $\int_{0}^{1} f(x) d x=2, \quad \int_{1}^{3} f(x) d x=3, \quad \int_{0}^{3} g(x) d x=1$.
Is it true $f(x) \geq 0$ on $[0,1]$?
Compute:

1. $\int_{0}^{3} f(t) d t$
2. $\int_{0}^{3} f(x) d t$
3. $\int_{3}^{1} f(x) d x$
4. $\int_{-1}^{-3} f(x) d x$
5. $\int_{0}^{3} f(x)-3 g(x) d x$

Interpreting limits of sums as integrals

Write the following limits as (definite) integrals:

1. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n+k}{n^{2}}$
2. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(1+\frac{6 k}{n}\right)+\left(2+\frac{2 k}{n}\right)^{2}\right) \frac{4}{n}$

Indefinite integrals

Given $f(x)$, we denote the indefinite integral of f by $\int f(x) d x$, it is defined as the collection of antideratives of $f(x)$. Notice a priori this has nothing to do with the (definite) integrals we defined before. Compute (by guess and check):

1. $\int \frac{1}{3 x+2} d x$
2. $\int \tan ^{2}(\theta) d \theta$
3. $\int \frac{1}{1+x^{2}} d x$
4. $\int \frac{1}{3+5 t^{2}} d t$
