Today's topics and news

- Topics: Sigma, infimum and supremum, definition of the integral
- Homework: Watch videos 7.8-7.12, 8.1-8.2
- E-mail: qin.deng@mail.utoronto.ca
- Office hours: WF 4-5, Math Aid Centre, PG101

Sigma

Recall that \sum is called sigma and is a notation used the denote sum.

Given $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}$,
$\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}$.
Define $\forall k \in \mathbb{N}, a_{k}=2 k+1$. Compute:

1. $\sum_{k=2}^{4} a_{k}$.
2. $\sum_{i=2}^{4} a_{k}$.
3. $\sum_{i=2}^{4} a_{i}$.

Sigma notation exercise

Write out what both sides of the equation are according to the definition of sigma. Check if these equalities are true.

Given $a_{k}, b_{k} \in \mathbb{R}, c \in \mathbb{R}$.

1. $\sum_{k=1}^{n} 1=1$
2. $\sum_{k=1}^{n}\left(c a_{k}+b_{k}\right)=c \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
3. $\sum_{k=1}^{n}\left(a_{k} b_{k}\right)=\left(\sum_{k=1}^{n} a_{k}\right)\left(\sum_{k=1}^{n} b_{k}\right)$

Sigma notaiton exercise

Consider the sum $15+21+27+33+\ldots 297+303$. Write this in \sum notation.

We have the following formulas:

1. $\sum_{k=1}^{n} 1=n$
2. $\sum_{k=1}^{n} k=\frac{(n)(n+1)}{2}$
3. $\sum_{k=1}^{n} k^{2}=\frac{(n)(n+1)(2 n+1)}{6}$

Compute the sum above using these formulas.

Double sums

Compute:

1. $\sum_{i=1}^{n}\left(\sum_{k=1}^{n} 1\right)$
2. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} 1\right)$
3. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} i\right)$
4. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} k\right)$
5. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} i k\right)$

Use the following formulas:

$$
\begin{aligned}
& \text { 1. } \sum_{k=1}^{n} k=\frac{(n)(n+1)}{2} \\
& \text { 2. } \sum_{k=1}^{n} k^{2}=\frac{(n)(n+1)(2 n+1)}{6}
\end{aligned}
$$

Infimum

Definition

Given a set $A \subseteq \mathbb{R}$ and $a \in \mathbb{R}$, we say:

1. a i a lower bound of A if \qquad .
2. A is bounded below if \qquad .
3. a is a minimum of A if \qquad .
4. a is an infimum of A if \qquad and

Using these definitions, answer the following questions:

1. Does \emptyset have a lower bound?
2. Does \emptyset have a minimum?
3. Does \emptyset have an infimum?

Warm up

Find the supremum, infimum, maximum and minimum of the following sets if they exist:

1. $A=[0,1)$
2. $B=\{1,2,3\}$
3. $C=\left\{\frac{1}{n}: n \in \mathbb{N}, n \neq 0\right\}$

Prove $\inf (A)=0$:

1. Check 0 a lower bound.
2. Suppose $/$ is another lower bound of A, why does 0 have to be larger?

Prove $\sup (A)=1$:

1. Check 1 an upper bound?
2. Suppose u is another upper bound of A, and assume it's less than 1 , come up with a number in A (using u) which is for sure larger than u, therefore contradicting the fact that u is an upper bound.

Existence of sup and inf

Existence theorem for sup and inf

Given $A \subseteq \mathbb{R}$,
A has a supremum iff A is bounded above and $A \neq \emptyset$.
A has an infimum iff A is bounded below and $A \neq \emptyset$.

Equivalent definitions of supremum

Assume u is an upper bound of the set A, which of the following statements are equivalent to $u=\sup (A)$?

1. $\forall v \leq u, v$ is not an upper bound of A.
2. $\forall v<u, v$ is not an upper bound of A.
3. $\forall v<u, \exists x \in A$ s.t. $v<x$.
4. $\forall v<u, \exists x \in A$ s.t. $v \leq x$.
5. $\forall v<u, \exists x \in A$ s.t. $v<x \leq u$.
6. $\forall v<u, \exists x \in A$ s.t. $v<x<u$.
7. $\forall \epsilon>0, \exists x \in A$ s.t. $u-\epsilon<x \leq u$.
8. $\forall \epsilon>0, \exists x \in A$ s.t. $u-\epsilon<x<u$.

Equivalent definition of sup

$u=\sup (A)$ iff u is an upper bound of A and $\forall \epsilon>0, \exists x \in A$ s.t.
$u-\epsilon<x \leq u$.

Sup and inf of functions

Compute:

1. sup $f(x)$
$x \in[0.5,1.5]$
2. $\max _{x} f(x)$
$x \in[0.5,1.5]$
3. $\inf f(x)$ $x \in[0.5,1.5]$
4. $\min _{x \in[0.5,1.5]} f(x)$

Partitions

Which of the following are partitions of $[0,2]$?

1. $[0,2]$
2. $(0,2)$
3. $\{0,2\}$
4. $\{1,2\}$
5. $\{0,1,1.5,2\}$

A partition of $[a, b]$ is expressed as a finite set S where $S \subseteq[a, b]$ and a, $b \in S$. It should be thought of as a way of dividing up the interval $[a, b]$, where you divide $[a, b]$ at all elements of S. Partitions are often written in order.

Definition of upper sum

Given a bounded function f on $[a, b]$ and a partition P, there are two ways to estimate the "signed area under the curve of f ". These are called upper sum $U_{P}(f)$ and the lower sum $L_{P}(f)$. As you will see in the next slide, these estimates depend on the partition.

Given a partition $\left\{a=x_{0}<x_{1}<\ldots x_{n}=b\right\}$ of $[a, b]$ and a function f. Define $U_{P}(f)$.

Computing $U_{P}(f)$

Compute $U_{P}(f)$ for the following partitions:

1. $\{0,2\}$
2. $\{0,1,2\}$
3. $\{0,0.5,1.5,2\}$

Upper and lower integrals

We see that given a bounded function f on $[a, b]$ and a partition P of [a, b], we can produce two estimates for the area under f between a and b, one of which is an underestimate and one of which is an overestimate.

There are infinitely many partitions, each giving their own (potentially) distinct over- and underestimates. If we want to get a true notion of the area, we can look all possible partitions and their corresponding underestimates $L_{P}(f)$, and think about the "largest" of all of them. We can similarly look at the all possible partitions and their corresponding overestimates $U_{P}(f)$, and think about the "smallest" of all of them. This motivates the following definitions:

1. The upper integral $\overline{l_{a}^{b}}(f):=$
2. The lower integral $\underline{l}_{\underline{a}}^{b}(f):=$

Integrability

1. The upper integral $\overline{l_{a}^{b}}(f):=\inf \left(\left\{U_{P}(f): \mathrm{P}\right.\right.$ is a partition of $\left.\left.[a, b]\right\}\right)$
2. The lower integral $\underline{I}_{\underline{b}}^{b}(f):=\sup \left(\left\{L_{P}(f): P\right.\right.$ is a partition of $\left.\left.[a, b]\right\}\right)$

Note there is a relationship between these two numbers: $\overline{l_{a}^{b}}(f) \geq \underline{l_{a}^{b}}(f)$.
These are the best possible candidates for area under f and there's no preference for one over the other. That's why if they are not equal (i.e. $\left.\overline{l_{a}^{b}}(f)>\underline{l_{a}^{b}}(f)\right)$, we don't have a good notion of area and we say the function is not integrable. And if they are equal, then the function is integrable and

$$
\int_{a}^{b} f(x) d x=\overline{I_{a}^{b}}(f)=\underline{l_{a}^{b}}(f) .
$$

Why do we use inf instead of min in the definition of $\overline{I_{a}^{b}}(f)$?

Consider $f(x)=x$, it is true that $\overline{I_{0}^{1}}(f)=\frac{1}{2}$. Is there a partition P such that $U_{P}(f)=\overline{I_{0}^{1}}(f)$?

Lower and upper sums

Let f be a increasing, bounded function on [$a, b]$, and $P=\left\{a=x_{0}<x_{1}<\ldots<x_{N}=b\right\}$ a partition of $[a, b]$.

What is M_{i} and m_{i} in this case? Write down the formula for $U_{P}(f)$ and $L_{P}(f)$.

