- Topics: Sigma, infimum and supremum, definition of the integral
- Homework: Watch videos 7.8 7.12, 8.1 8.2
- E-mail: qin.deng@mail.utoronto.ca
- Office hours: WF 4 5, Math Aid Centre, PG101

Recall that \sum is called sigma and is a notation used the denote sum.

Given
$$a_1, a_2, \dots a_n \in \mathbb{R}$$
,

$$\sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n.$$

Define $\forall k \in \mathbb{N}, a_k = 2k + 1$. Compute:

1.
$$\sum_{k=2}^{4} a_k.$$

2.
$$\sum_{i=2}^{4} a_k.$$

3.
$$\sum_{i=2}^{4} a_i.$$

Write out what both sides of the equation are according to the definition of sigma. Check if these equalities are true.

Given a_k , $b_k \in \mathbb{R}$, $c \in \mathbb{R}$.

1.
$$\sum_{k=1}^{n} 1 = 1$$

2. $\sum_{k=1}^{n} (ca_k + b_k) = c \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$
3. $\sum_{k=1}^{n} (a_k b_k) = (\sum_{k=1}^{n} a_k) (\sum_{k=1}^{n} b_k)$

Consider the sum $15+21+27+33+\ldots 297+303.$ Write this in \sum notation.

We have the following formulas:

1.
$$\sum_{k=1}^{n} 1 = n$$

2. $\sum_{k=1}^{n} k = \frac{(n)(n+1)}{2}$
3. $\sum_{k=1}^{n} k^2 = \frac{(n)(n+1)(2n+1)}{6}$

Compute the sum above using these formulas.

Double sums

Compute:

1.
$$\sum_{i=1}^{n} (\sum_{k=1}^{n} 1)$$

2. $\sum_{i=1}^{n} (\sum_{k=1}^{i} 1)$
3. $\sum_{i=1}^{n} (\sum_{k=1}^{i} i)$

4.
$$\sum_{i=1}^{n} (\sum_{k=1}^{i} k)$$

5. $\sum_{i=1}^{n} (\sum_{k=1}^{i} ik)$

Use the following formulas:

1.
$$\sum_{k=1}^{n} k = \frac{(n)(n+1)}{2}$$

2. $\sum_{k=1}^{n} k^2 = \frac{(n)(n+1)(2n+1)}{6}$

3.
$$\sum_{k=1}^{n} k^3 = \frac{(n)^2(n+1)^2}{4}$$

Definition

Given a set $A\subseteq \mathbb{R}$ and $a\in \mathbb{R}$, we say:	
1. <i>a</i> i a lower bound of <i>A</i> if	·
2. A is bounded below if	
3. <i>a</i> is a minimum of <i>A</i> if	
4. <i>a</i> is an infimum of <i>A</i> if	and

Using these definitions, answer the following questions:

- 1. Does \emptyset have a lower bound?
- 2. Does \emptyset have a minimum?
- 3. Does \emptyset have an infimum?

Warm up

Find the supremum, infimum, maximum and minimum of the following sets if they exist:

1.
$$A = [0, 1)$$

2. $B = \{1, 2, 3\}$
3. $C = \{\frac{1}{n} : n \in \mathbb{N}, n \neq 0\}$

Prove inf(A) = 0:

- 1. Check 0 a lower bound.
- 2. Suppose I is another lower bound of A, why does 0 have to be larger?

Prove sup(A) = 1:

1. Check 1 an upper bound?

2. Suppose u is another upper bound of A, and assume it's less than 1, come up with a number in A (using u) which is for sure larger than u, therefore contradicting the fact that u is an upper bound.

Existence theorem for sup and inf

Given $A \subseteq \mathbb{R}$, A has a supremum iff A is bounded above and $A \neq \emptyset$. A has an infimum iff A is bounded below and $A \neq \emptyset$.

Equivalent definitions of supremum

Assume *u* is an upper bound of the set *A*, which of the following statements are equivalent to $u = \sup(A)$?

1. $\forall v \leq u, v$ is not an upper bound of *A*. 2. $\forall v < u, v$ is not an upper bound of *A*. 3. $\forall v < u, \exists x \in A \text{ s.t. } v < x.$ 4. $\forall v < u, \exists x \in A \text{ s.t. } v \leq x.$ 5. $\forall v < u, \exists x \in A \text{ s.t. } v < x \leq u.$ 6. $\forall v < u, \exists x \in A \text{ s.t. } v < x < u.$ 7. $\forall \epsilon > 0, \exists x \in A \text{ s.t. } u - \epsilon < x \leq u.$ 8. $\forall \epsilon > 0, \exists x \in A \text{ s.t. } u - \epsilon < x < u.$

Equivalent definition of sup

 $u = \sup(A)$ iff u is an upper bound of A and $\forall \epsilon > 0$, $\exists x \in A$ s.t. $u - \epsilon < x \le u$.

Sup and inf of functions

Which of the following are partitions of [0, 2]?

- 1. [0,2]
- 2. (0, 2)
- 3. $\{0, 2\}$
- 4. $\{1, 2\}$
- 5. $\{0, 1, 1.5, 2\}$

A **partition** of [a, b] is **expressed** as a finite set *S* where $S \subseteq [a, b]$ and *a*, $b \in S$. It should be **thought of** as a way of dividing up the interval [a, b], where you divide [a, b] at all elements of *S*. Partitions are often written in order.

Given a bounded **function** f on [a, b] **and** a **partition** P, there are two ways to estimate the "signed area under the curve of f". These are called upper sum $U_P(f)$ and the lower sum $L_P(f)$. As you will see in the next slide, these estimates **depend** on the partition.

Given a partition $\{a = x_0 < x_1 < ... x_n = b\}$ of [a, b] and a function f. Define $U_P(f)$.

Compute $U_P(f)$ for the following partitions:

1.
$$\{0, 2\}$$

2. $\{0, 1, 2\}$
3. $\{0, 0.5, 1.5, 2\}$

We see that given a bounded function f on [a, b] and a partition P of [a, b], we can produce two estimates for the area under f between a and b, one of which is an underestimate and one of which is an overestimate.

There are infinitely many partitions, each giving their own (potentially) distinct over- and underestimates. If we want to get a true notion of the area, we can look all possible partitions and their corresponding underestimates $L_P(f)$, and think about the "largest" of all of them. We can similarly look at the all possible partitions and their corresponding overestimates $U_P(f)$, and think about the "smallest" of all of them. This motivates the following definitions:

- 1. The upper integral $\overline{I_a^b}(f) :=$
- 2. The lower integral $\underline{I_a^b}(f) :=$

1. The upper integral $\overline{I_a^b}(f) := \inf(\{U_P(f) : P \text{ is a partition of } [a, b]\})$ 2. The lower integral $I_a^b(f) := \sup(\{L_P(f) : P \text{ is a partition of } [a, b]\})$

Note there is a relationship between these two numbers: $\overline{I_a^b}(f) \ge \underline{I_a^b}(f)$.

These are the best possible candidates for area under f and there's no preference for one over the other. That's why if they are not equal (i.e. $\overline{I_a^b}(f) > \underline{I_a^b}(f)$), we don't have a good notion of area and we say the function is not integrable. And if they are equal, then the function is **integrable** and

$$\int_{a}^{b} f(x) dx = \overline{I_{a}^{b}}(f) = \underline{I_{a}^{b}}(f).$$

Consider f(x) = x, it is true that $\overline{I_0^1}(f) = \frac{1}{2}$.

Is there a partition P such that $U_P(f) = \overline{I_0^1}(f)$?

Let f be a increasing, bounded function on [a, b], and $P = \{a = x_0 < x_1 < ... < x_N = b\}$ a partition of [a, b].

What is M_i and m_i in this case? Write down the formula for $U_P(f)$ and $L_P(f)$.