- Topic: Integration by parts and integration of trig functions
- **Homework:** Watch videos 9.15 (9.16 and 9.17 are supplementary).

Try using integration by parts to integrate the following:

•  $\int xe^{-2x}dx$ •  $\int (x+3)^2 \frac{1}{\sqrt{x+1}}dx$ 

### Computation practice: Integration by parts

Compute



We want to compute

$$I=\int e^{ax}\sin(bx)\ dx$$

Hint: You will need to use integration by parts twice. Once you get it to work, think about what happens if you made different chocies in your integration by parts.

### Persistence

# Compute

• 
$$\int_{1}^{e} \left( \ln x \right)^{4} dx$$

•  $\int_{1}^{e} (\ln x)^{10} dx$ 

There is a more efficient approach. Call

$$I_n = \int_1^e \left(\ln x\right)^n dx$$

Use integration by parts on  $I_n$ . You will get a relationship between  $I_n$  and  $I_{n-1}$ . Now solve the previous questions.

### Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where it is easy to finish, you may stop.)

$$\int \sin^{10} x \cos x \, dx$$

$$\int \cos^2 x \, dx$$

$$\int \sin^{10} x \cos^3 x \, dx$$

$$\int e^{\cos x} \cos x \sin^5 x \, dx$$

#### Useful trig identities

$$\sin^{2} x + \cos^{2} x = 1 \qquad \qquad \sin^{2} x = \frac{1 - \cos(2x)}{2}$$
$$\tan^{2} x + 1 = \sec^{2} x \qquad \qquad \cos^{2} x = \frac{1 + \cos(2x)}{2}$$

# Practice: Integrals with trigonometric functions

$$\int \sin^{10} x \cos x \, dx$$

$$\int \cos^2 x \, dx$$

$$\int \sin^{10} x \cos^3 x \, dx$$

$$\int e^{\cos x} \cos x \sin^5 x \, dx$$

### Integral of products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

• What are the two basic forms that are easy to integrate directly with a <u>subsitution</u>?

- If [???], then try a trig identity and then the substitution  $u = \tan x$ .
- If |???|, then try a trig identity and then the substitution  $u = \sec x$ .

Hint: You will need

• 
$$\frac{d}{dx} [\tan x] = \dots$$
 •  $\frac{d}{dx} [\sec x] = \dots$ 

• The trig identity involving sec and tan

### Integral of products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

- What are the two basic forms that are easy to integrate directly with a subsitution?
- If  $\boxed{???}$ , then use a trig identity and then try the substitution  $u = \tan x$ .
- If 2??, then use a trig identity and the try the substitution  $u = \sec x$ .

Notice the scenarios from the previous slide does not cover some cases. For example, the following:

- $\int \tan(x) dx$
- ∫ sec(x)dx (Hint: multiply and divide by sec(x) + tan(x))
- $\int \sec^3(x) dx$  (Hint: use 2)

# A pair of mysterious functions

Suppose functions  $\alpha(x), \beta(x)$  satisfy the following:

$$a'(x) = 2\beta(x)$$

$$\beta'(x) = \frac{1}{2}\alpha(x)$$

**3** 
$$\alpha(x)^2 - \beta(x)^2 = 1.$$

Do not try to find formulas for  $\alpha(x)$  or  $\beta(x)$ . Integrate the following (your answers will have terms involving  $\alpha$  and  $\beta$  and that's fine):

1 
$$\int \sin(x)\alpha(x)dx$$
  
2  $\int \frac{\beta(x)^3}{\alpha(x)^4}$ .