Today's topics and news

- Topic: Area, Integration by substitution
- Homework: Watch videos 9.5-9.12 (9.7-9.9,
9.11 and 9.12 supplementary) for Tuesday and 9.15 -
9.17 (9.16 and 9.17 supplementary) for Wednesday.

Examples of FTC 2 - Areas

Calculate the area of the bounded region...
-.. between the x-axis and $y=4 x-x^{2}$.
(2) ... between $y=\cos x$, the x-axis, from $x=0$ to $x=\pi$.

- ... between $y=x^{2}+3$ and $y=3 x+1$.
- ... between $y=1$, the y-axis, and $y=\ln (x+1)$.

Warm up

Calculate

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x
$$

Definite integral via substitution

This final answer is right, but the write-up is WRONG. Why?
Calculate $I=\int_{0}^{2} \sqrt{x^{3}+1} x^{2} d x$

Wrong answer

Substitution: $u=x^{3}+1, d u=3 x^{2} d x$.

$$
\begin{aligned}
I & =\frac{1}{3} \int_{0}^{2} \sqrt{x^{3}+1}\left(3 x^{2} d x\right) & & =\frac{1}{3} \int_{0}^{2} u^{1 / 2} d u \\
& =\left.\frac{1}{3} \frac{2}{3} u^{3 / 2}\right|_{0} ^{2} & & =\left.\frac{1}{9}\left(x^{3}+1\right)^{2 / 3}\right|_{0} ^{2} \\
& =\frac{2}{9}\left(2^{3}+1\right)^{3 / 2}-\frac{2}{9}(0+1)^{3 / 2} & & =\frac{52}{9}
\end{aligned}
$$

Computation practice: integration by substitution

Guess the substitution you want to use (don't actually substitute):

- $\int e^{x} \cos \left(e^{x}\right) d x$
- $\int \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x$
- $\int \cot x d x$
- $\int \frac{(\ln \ln x)^{2}}{x \ln x} d x$
- $\int x^{2} \sqrt{x+1} d x$
- $\int x e^{-x^{2}} d x$

A different kind of substitution

Calculate

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

using the substitution $x=\sin \theta$.
This is often called integration by trignometric substitution, which is covered in videos 9.13 and 9.14.

Odd functions

Theorem

Let f be a continuous function. Let $a>0$. IF f is odd, THEN

$$
\int_{-a}^{a} f(x) d x=? ? ?
$$

(9) Draw a picture to interpret the theorem geometrically.
(2) Write down the definition of "odd function".

- Prove the theorem!

Hint: Write the integral as sum of two pieces. Use a substitution in one of them to show that they cancel with each other.

