- Topic: Area, Integration by substitution
- Homework: Watch videos 9.5 9.12 (9.7 9.9, 9.11 and 9.12 supplementary) for Tuesday and 9.15 9.17 (9.16 and 9.17 supplementary) for Wednesday.

Calculate the area of the bounded region...

• ... between the x-axis and
$$y = 4x - x^2$$
.

• ... between $y = \cos x$, the x-axis, from x = 0 to $x = \pi$.

• ... between
$$y = x^2 + 3$$
 and $y = 3x + 1$.

• ... between
$$y = 1$$
, the y-axis, and $y = \ln(x + 1)$.

Calculate

Definite integral via substitution

This final answer is right, but the write-up is WRONG. Why?

Calculate
$$I = \int_0^2 \sqrt{x^3 + 1} x^2 dx$$

Wrong answer

Substitution:
$$u = x^3 + 1$$
, $du = 3x^2 dx$.

$$I = \frac{1}{3} \int_0^2 \sqrt{x^3 + 1} (3x^2 dx) = \frac{1}{3} \int_0^2 u^{1/2} du$$

= $\frac{1}{3} \frac{2}{3} u^{3/2} \Big|_0^2 = \frac{1}{9} (x^3 + 1)^{2/3} \Big|_0^2$
= $\frac{2}{9} (2^3 + 1)^{3/2} - \frac{2}{9} (0 + 1)^{3/2} = \frac{52}{9}$

Computation practice: integration by substitution

Guess the substitution you want to use (don't actually substitute):

•
$$\int e^x \cos(e^x) dx$$

• $\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$
• $\int \cot x dx$
• $\int \frac{(\ln \ln x)^2}{x \ln x} dx$
• $\int x^2 \sqrt{x + 1} dx$
• $\int xe^{-x^2} dx$

Calculate

$$\int_0^1 \sqrt{1-x^2} \, dx$$

using the substitution $x = \sin \theta$.

U

This is often called integration by trignometric substitution, which is covered in videos 9.13 and 9.14.

Theorem

Let f be a continuous function. Let a > 0. IF f is odd, THEN \int^{a}

$$\int_{-a} f(x) dx = ???$$

- Draw a picture to interpret the theorem geometrically.
- Write down the definition of "odd function".
- Prove the theorem!
 Hint: Write the integral as sum of two pieces. Use a substitution in one of them to show that they cancel with each other.