Today's topics and news

- Topic: Antiderivative, indefinite integrals
- Homework: Watch videos 8.3-8.7 for Tuesday and 9.1, 9.4 for Wednesday (9.2, 9.3 are supplementary).

The " ε-characterization" of integrability - First proof

Claim

Let f be a bounded function on $[a, b]$.

- IF f is integrable on $[a, b]$
- THEN " $\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$ ".

Proof:

Assume f is integrable on $[a, b]$ (i.e $\overline{l_{a}^{b}}(f)=\underline{l_{a}^{b}}(f)$). Let $\epsilon>0$.
By ϵ-reformulation of sup and inf and the definition of $\overline{I_{a}^{b}}(f)$ and $\underline{I}_{a}^{b}(f)$, there exists partitions P_{1} and P_{2} s.t. $U_{P_{1}}(f)<\overline{l_{a}^{b}}(f)+\frac{\epsilon}{2}$ and $L_{P_{2}}(f)>\underline{l_{a}^{b}}(f)-\frac{\epsilon}{2}$.
Since $\overline{l_{a}^{b}}(f)=\underline{l_{a}^{b}}(f), U_{P_{1}}(f)-L_{P_{2}}(f)<\epsilon$.
Choose $P=P_{1} \cup P_{2}$. Then $U_{P_{1}}(f) \geq U_{P}(f) \geq L_{P}(f) \geq L_{P_{2}}(f)$. So $U_{P}(f)-L_{P}(f) \leq U_{P_{1}}(f)-L_{P_{2}}(f)<\epsilon$ as required.

The " ε-characterization" of integrability - Second proof

You are going to prove

Claim

Let f be a bounded function on $[a, b]$.

- IF $\quad \forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon "$.
- THEN f is integrable on $[a, b]$
(1) Recall the definition of " f is integrable on $[a, b]$ ".
(2) For any partition P, order the quantities $U_{P}(f), L_{P}(f), \overline{l_{a}^{b}}(f), \underline{l_{a}^{b}}(f)$.
(3) For any partition P, order the quantities $U_{P}(f)-L_{P}(f)$, $\overline{l_{a}^{b}}(f)-{\underline{l_{a}^{b}}}_{a}^{b}(f)$, and 0 .
(4) Prove the following lemma "Let $a \geq 0$. IF $\forall \epsilon>0, a<\epsilon$ THEN $a=0$ ".
(5) Use 3 and 4 together to conclude.
(0) Write down a proof for the claim.

The " ε-characterization" of integrability

The " ε-characterization" of integrability
Let f be a bounded function on $[a, b]$.
f is integrable on $[a, b]$
IFF
$\forall \varepsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U_{P}(f)-L_{P}(f)<\varepsilon$.

Properties of the integral

Assume we know the following

$$
\int_{0}^{2} f(x) d x=3, \quad \int_{0}^{4} f(x) d x=9, \quad \int_{0}^{4} g(x) d x=2
$$

Compute:

- $\int_{0}^{2} f(t) d t$
- $\int_{2}^{4} f(x) d x$
(2) $\int_{0}^{2} f(t) d x$
- $\int_{2}^{0} f(x) d x$
- $\int_{-2}^{0} f(x) d x$
- $\int_{0}^{4}[f(x)-2 g(x)] d x$

Riemann sums example

Imitate the calculation in Video 7.11.

Exercise

Let $f(x)=x^{2}$ on $[0,1]$.
Let $P_{n}=\{$ breaking the interval into n equal pieces $\}$.
(1) Write a explicit formula for P_{n}.
(2) What is Δx_{i} ?
(3) Write $S_{P_{n}}^{*}(f)$ as a sum when we choose x_{i}^{*} as the right end-point.
(9) Add the sum
(5) Compute $\lim _{n \rightarrow \infty} S_{P_{n}}^{*}(f)$.
(6) Repeat the last 3 questions when we choose x_{i}^{*} as the left end-point.

Helpful formulas: $\quad \sum_{i=1}^{N} i=\frac{N(N+1)}{2}, \quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$

Towards FTC

Compute:
(1) $\int_{0}^{1} f(t) d t$
(2) $\int_{0}^{2} f(t) d t$
(3) $\int_{0}^{3} f(t) d t$
(9) $\int_{0}^{4} f(t) d t$
(5) $\int_{0}^{5} f(t) d t$

Towards FTC (continued)

Call $F(x)=\int_{0}^{x} f(t) d t$. This is a new function.

- Sketch the graph of $y=F(x)$.
- Using the graph you just sketched, sketch the graph of $y=F^{\prime}(x)$.

Warm-up

Fix $a, b \in \mathbb{R}$. Given a function f integrable on \mathbb{R}.
Recall what type of object the following are and how they are defined.

1. $\int_{a}^{b} f(x) d x$
2. $\int_{a}^{x} f(t) d t$
3. $\int f(x) d x$

Which of the three are related from the definition?

Functions defined by integrals

Which ones of these are valid ways to define functions?
(1) $F(x)=\int_{0}^{x} \frac{t}{1+t^{8}} d t$
(5) $F(x)=\int_{\sin x}^{e^{x}} \frac{t}{1+t^{8}} d t$
(2) $F(x)=\int_{0}^{x} \frac{x}{1+x^{8}} d x$
(6) $F(x)=\int_{0}^{3} \frac{t}{1+x^{2}+t^{8}} d t$
(3) $F(x)=\int_{0}^{x} \frac{x}{1+t^{8}} d t$
(1) $F(x)=x \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t$
(9) $F(x)=\int_{0}^{x^{2}} \frac{t}{1+t^{8}} d t$
(8) $F(x)=t \int_{\sin x}^{e^{x}} \frac{t}{1+x^{2}+t^{8}} d t$

Antiderivatives

Compute these antiderivatives by guess-and-check.
(1) $\int x^{5} d x$
(1) $\int \sin (3 x) d x$
(2) $\int\left(3 x^{8}-18 x^{5}+x+1\right) d x$
(8) $\int \cos (3 x+2) d x$
(3) $\int \sqrt[3]{x} d x$
(9) $\int \sec ^{2} x d x$
(9) $\int \frac{1}{x^{9}} d x$
(10) $\int \sec x \tan x d x$
(6) $\int \sqrt{x}\left(x^{2}+5\right) d x$
(1) $\int \frac{1}{x} d x$
(6) $\int \frac{1}{e^{2 x}} d x$
(12) $\int \frac{1}{x+3} d x$

