- Topic: Definition of integrals
- **Homework:** Watch videos 7.8 7.12 for next Tuesday and watch videos 8.1, and 8.2 for Wednesday.

Assume *u* is an upper bound of the set *A*, which of the following statements are equivalent to $u = \sup(A)$?

- 1. $\forall v \leq u, v$ is not an upper bound of A.
- 2. $\forall v < u$, v is not an upper bound of A.
- 3. $\forall v < u, \exists x \in A \text{ s.t. } v < x.$
- 4. $\forall v < u, \exists x \in A \text{ s.t. } v \leq x.$
- 5. $\forall v < u$, $\exists x \in A$ s.t. $v < x \le u$.
- 6. $\forall v < u, \exists x \in A \text{ s.t. } v < x < u.$
- 7. $\forall \epsilon > 0$, $\exists x \in A$ s.t. $u \epsilon < x \leq u$.
- 8. $\forall \epsilon > 0, \exists x \in A \text{ s.t. } u \epsilon < x < u.$

Partitions

Which of the following are partitions of [0, 2]?

- $1. \ [0, 2]$
- 2. (0,2)
- 3. $\{0, 2\}$
- 4. $\{1, 2\}$
- 5. $\{0, 1, 1.5, 2\}$

A **partition** of [a, b] is **expressed** as a finite set *S* where $S \subseteq [a, b]$ and $a, b \in S$. It should be **thought of** as a way of dividing up the interval [a, b] into finitely many subintervals, where you divide [a, b] at all elements of *S*. Partitions are often written in order.

Given a **bounded function** f on [a, b] and a partition P, there are two ways to estimate the "signed area under the curve of f". These are called upper sum $U_P(f)$ and the lower sum $L_P(f)$. As you will see in the next slide, these estimates **depend** on the partition.

Given a partition $\{a = x_0 < x_1 < ... x_n = b\}$ of [a, b] and a function f. Define $U_P(f)$.

Compute $U_P(f)$ for the following partitions:

1. $\{0,2\}$ 2. $\{0,0.5,1.5,2\}$ We see that given a bounded function f on [a, b] and a partition P of [a, b], we can produce two estimates for the area under f between a and b, one of which is an underestimate and one of which is an overestimate.

There are infinitely many partitions, each giving their own (potentially) distinct over- and underestimates. If we want to get a true notion of the area, we can look all possible partitions and their corresponding underestimates $L_P(f)$, and think about the "largest" of all of them. We can similarly look at the all possible partitions and their corresponding overestimates $U_P(f)$, and think about the "smallest" of all of them. This motivates the following definitions:

- 1. The upper integral $\overline{I_a^b}(f) :=$
- 2. The lower integral $\underline{I_a^b}(f) :=$

1. The upper integral $\overline{I_a^b}(f) := \inf(\{U_P(f) : P \text{ is a partition of } [a, b]\})$ 2. The lower integral $I_a^b(f) := \sup(\{L_P(f) : P \text{ is a partition of } [a, b]\})$

Note there is a relationship between these two numbers: $\overline{I_a^b}(f) \ge \underline{I_a^b}(f)$.

These are the best possible candidates for area under f and there's no preference for one over the other. That's why if they are not equal (i.e. $\overline{I_a^b}(f) > \underline{I_a^b}(f)$), we don't have a good notion of area and we say the function is not integrable. And if they are equal, then the function is **integrable** and

$$\int_{a}^{b} f(x) dx = \overline{I_{a}^{b}}(f) = \underline{I_{a}^{b}}(f).$$