Today's topics and news

Welcome back!

Today's topics and news

Welcome back!
Topic: Sums and sigmas

Today's topics and news

- Welcome back!
- Topic: Sums and sigmas
- Homework: Watch videos 7.3-7.5 for Thursday.

Sigma

Recall from (7.2) that \sum is called sigma and is a notation used the denote sum.
Given $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}, \sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}$.

Sigma

Recall from (7.2) that \sum is called sigma and is a notation used the denote sum.
Given $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}, \sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}$. Here k is the dummy variable and has no meaning outside of \sum.
Define $\forall k \in \mathbb{N}, a_{k}=2 k+1$. Compute:

1. $\sum_{k=2}^{4} a_{k}$.
2. $\sum_{i=2}^{4} a_{k}$.
3. $\sum_{i=2}^{4} a_{i}$.

Write these sums with sigma notation

- $1^{5}+2^{5}+3^{5}+4^{5}+\ldots+100^{5}$
- $\frac{2}{4^{2}}+\frac{2}{5^{2}}+\frac{2}{6^{2}}+\frac{2}{7^{2}}+\ldots+\frac{2}{N^{2}}$
- $\frac{1}{1!}-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{1}{81!}$
- $\frac{x^{2}}{3!}+\frac{2 x^{3}}{4!}+\frac{3 x^{4}}{5!}+\frac{4 x^{5}}{6!}+\ldots+\frac{999 x^{1000}}{1001!}$

Re-writing sums

- $\sum_{i=1}^{100} \tan i-\sum_{i=1}^{50} \tan i=\sum_{? ? ?}^{? ? ?} ?$
- $\sum_{i=1}^{N}(2 i-1)^{5}=\sum_{i=0}^{N-1} ? ? ?$

Double sums

Compute:

1. $\sum_{i=1}^{n}\left(\sum_{k=1}^{n} 1\right)$
2. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} 1\right)$
3. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} i\right)$

Use the following formulas:

1. $\sum_{k=1}^{n} k=\frac{(n)(n+1)}{2}$
2. $\sum_{k=1}^{n} k^{2}=\frac{(n)(n+1)(2 n+1)}{6}$
3. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} k\right)$
4. $\sum_{i=1}^{n}\left(\sum_{k=1}^{i} i k\right)$
5. $\sum_{k=1}^{n} k^{3}=\frac{(n)^{2}(n+1)^{2}}{4}$

Sigma notaiton exercise

Consider the sum $15+21+27+33+\ldots 297+303$. Write this in \sum notation.

Sigma notaiton exercise

Consider the sum $15+21+27+33+\ldots 297+303$. Write this in \sum notation.

We have the following formulas:

1. $\sum_{k=1}^{n} 1=n$
2. $\sum_{k=1}^{n} k=\frac{(n)(n+1)}{2}$
3. $\sum_{k=1}^{n} k^{2}=\frac{(n)(n+1)(2 n+1)}{6}$

Compute the sum above using these formulas.

