Today's topics and news

- Topic: Graph sketching
- Homework: Watch videos 7.1-7.4 for Tuesday and 7.5-7.7 for Wednesday of the week you are back. More improtantly have a relaxing winter break!

An equation from the asymptotes

Construct a function f that satisfies all the following conditions at the same time.

- f is a rational function (this means it is a quotient of polynomials).
- The line $y=1$ is an asymptote of the graph of f.
- The line $x=-1$ is an asymptote of the graph of f.

Periodic?

Construct a function H that has all the following properties at once:

- The domain of H is \mathbb{R}
- H is strictly increasing on \mathbb{R}
- H is differentiable on \mathbb{R}
- H^{\prime} is periodic with period with period 2
- H^{\prime} is not constant

Even and odd functions

Even function

A function is even if $\forall x \in$ doman of $f,-x$ is in the domain of f and $f(x)=f(-x)$.

Odd function

A function is even if $\forall x \in$ doman of $f,-x$ is in the domain of f and $-f(x)=f(-x)$.

These are not dichotomous - most functions are neither even nor odd!

A weird function

The function $G(x)=x e^{1 / x}$ is deceiving. To help you out:

$$
G^{\prime}(x)=\frac{x-1}{x} e^{1 / x}, \quad G^{\prime \prime}(x)=\frac{e^{1 / x}}{x^{3}}
$$

(1) Carefully study the behaviour as $x \rightarrow \pm \infty$. You should find an asymptote, but it is not easy.
(2) Carefully study the behaviour as $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$. The two are very different.

- Use G^{\prime} to study monotonocity.
- Use $G^{\prime \prime}$ to study concavity.
- Sketch the graph of G.

A note on the previous slide

(1) Even though monotonicity and concavity changes between $x>0$ and $x<0,0$ should not be considered a critical point or an inflection point. Why?
(2) One should check if $G(x)$ intersects $y=x+1$. It doesn't - when $x>0, G(x)>x+1$ always. You can justify this by checking that $G(x)-(x+1)$ is decreasing for $x>0$. Since $G(x)-(x+1)$ limits to 0 as $x \rightarrow \infty$ and ∞ as $x \rightarrow 0^{+}$, we can conclude $G(x)-(x+1)>0$ for $x>0$.

