Today's topics and news

- Topic: Indeterminate forms and L'Hôpital's Rule
- Homework: Watch videos 6.1 and 6.2 for Wednesday.

Reminder: There will be a formula sheet for trig identities on the test so don't stress about memorizing them. Please review the vocabulary sheet for the test.

An interesting function

Let

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(1) Calculate $f^{\prime}(x)$ for any $x \neq 0$.
(2) Using the definition of derivative, calculate $f^{\prime}(0)$.

- Is f continuous at 0 ?
- Is f differentiable at 0 ?
- Is f^{\prime} continuous at 0 ?

Warm-up: What's the difference?

Which of the following is in indeterminate form?

- $\lim _{x \rightarrow \infty}[x-x]$.
- $\lim _{x \rightarrow \infty} x-\lim _{x \rightarrow \infty} x$.

What's the difference?

Indeterminate?

Which of the following are indeterminate forms for limits?

- $\frac{0}{0}$
- $\frac{\infty}{\infty}$
(1) $\infty-\infty$
- $\frac{0}{\infty}$
$\frac{0}{1}$
- $\frac{1}{\infty}$
(1) 1^{∞}
(1) $0^{-\infty}$
- $0 \cdot \infty$
(3) $1^{-\infty}$
(6) ∞^{0}
- $\frac{\infty}{0}$
- $\infty \cdot \infty$
(2) 0^{0}
(1) ∞^{∞}
- $\sqrt{\infty}$
(1) 0^{∞}
(18) $\infty^{-\infty}$

Proving something is an indeterminate form

(1) Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R}$ and functions f and g s.t.

$$
\lim _{x \rightarrow a} f(x)=0, \quad \lim _{x \rightarrow a} g(x)=0, \quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=c
$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.
(Show the same way that $\frac{\infty}{\infty}, 0 \cdot \infty$, and $\infty-\infty$ are also indeterminate forms.

- Show that $1^{\infty}, 0^{0}$, and ∞^{0} are indeterminate forms. (You will not be able to get all $c \in \mathbb{R}$ this time.)

What's wrong with the following computation?

Since $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$ is in indeterminate form,
$\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}=\lim _{x \rightarrow \infty} \frac{1+\cos (x)}{1}$ by LH.
Therefore, $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$ DNE since $1+\cos (x)$ oscillates between 0 and 2 as $x \rightarrow \infty$.
What does $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x}$ actually equal?

Infinity minus infinity

Compute:

($\lim _{x \rightarrow \infty}[\ln (x+2)-\ln (3 x+4)]$
(2) $\lim _{x \rightarrow-\infty}\left[\sqrt{x^{2}+3 x}-\sqrt{x^{2}-3 x}\right]$

- $\lim _{x \rightarrow 0}\left[\frac{\csc x}{x}-\frac{\cot x}{x}\right]$
- $\lim _{x \rightarrow 1}\left[\frac{2}{x^{2}-1}-\frac{1}{x-1}\right]$

Exponential indeterminate forms

Compute:

(- $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
(2) $\lim _{x \rightarrow \frac{\pi}{2}^{-}}(\tan x)^{\cos x}$

- $\lim _{x \rightarrow 0}[1+2 \sin (3 x)]^{4 \cot (5 x)}$
- $\lim _{x \rightarrow \infty}\left(\frac{x+2}{x-2}\right)^{3 x}$
- $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}$

Limits from graphs

Compute:

- $\lim _{x \rightarrow 0} \frac{H(x)}{H(2+3 x)-1}$

- $\lim _{x \rightarrow 2} \frac{F^{-1}(x)}{x-2}$

Backwards L'Hôpital

(Construct a polynomial P such that

$$
\lim _{x \rightarrow 1} \frac{P(x)}{e^{x}-e \cdot x}=\frac{1}{e}
$$

(2) Find $a \in \mathbb{R}$ and $n \in \mathbb{N}$ such that the limit

$$
\lim _{x \rightarrow 0} \frac{\sin x-a x^{n}}{x^{3}}
$$

exists. What is the value of the limit?

