- Topic: Indeterminate forms and L'Hôpital's Rule
- Homework: Watch videos 6.1 and 6.2 for Wednesday.
- **Reminder:** There will be a formula sheet for trig identities on the test so don't stress about memorizing them. Please review the vocabulary sheet for the test.

Let

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

- Calculate f'(x) for any $x \neq 0$.
- Using the definition of derivative, calculate f'(0).
- Is f continuous at 0?
- Is f differentiable at 0?
- Is f' continuous at 0?

Which of the following is in indeterminate form?

- $\lim_{x\to\infty} [x-x].$
- $\lim_{x\to\infty} x \lim_{x\to\infty} x.$

What's the difference?

Which of the following are indeterminate forms for limits?

• Prove that $\forall c \in \mathbb{R}, \exists a \in \mathbb{R} \text{ and functions } f \text{ and } g \text{ s.t.}$

$$\lim_{x\to a} f(x) = 0, \quad \lim_{x\to a} g(x) = 0, \quad \lim_{x\to a} \frac{f(x)}{g(x)} = c$$

This is how you show that $\frac{0}{0}$ is an indeterminate form.

- Show the same way that $\frac{\infty}{\infty}$, $0 \cdot \infty$, and $\infty \infty$ are also indeterminate forms.
- Show that 1^{∞} , 0^{0} , and ∞^{0} are indeterminate forms. (You will not be able to get all $c \in \mathbb{R}$ this time.)

Since
$$\lim_{x \to \infty} \frac{x + \sin(x)}{x}$$
 is in indeterminate form,
 $\lim_{x \to \infty} \frac{x + \sin(x)}{x} = \lim_{x \to \infty} \frac{1 + \cos(x)}{1}$ by LH.
Therefore, $\lim_{x \to \infty} \frac{x + \sin(x)}{x}$ DNE since $1 + \cos(x)$ oscillates
between 0 and 2 as $x \to \infty$.

What does
$$\lim_{x\to\infty} \frac{x+\sin(x)}{x}$$
 actually equal?

Infinity minus infinity

Compute:

•
$$\lim_{x \to \infty} [\ln(x+2) - \ln(3x+4)]$$

$$\lim_{x \to -\infty} \left[\sqrt{x^2 + 3x} - \sqrt{x^2 - 3x} \right]$$

$$\lim_{x \to 0} \left[\frac{\csc x}{x} - \frac{\cot x}{x} \right]$$
$$\lim_{x \to 1} \left[\frac{2}{x^2 - 1} - \frac{1}{x - 1} \right]$$

Exponential indeterminate forms

Compute:

•
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

• $\lim_{x \to \frac{\pi}{2}^-} (\tan x)^{\cos x}$

$$\lim_{x \to 0} \left[1 + 2\sin(3x) \right]^{4\cot(5x)}$$
$$\lim_{x \to \infty} \left(\frac{x+2}{x-2} \right)^{3x}$$
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$

Limits from graphs

Compute:

• Construct a polynomial *P* such that

$$\lim_{x\to 1}\frac{P(x)}{e^x-e\cdot x}=\frac{1}{e}$$

• Find $a \in \mathbb{R}$ and $n \in \mathbb{N}$ such that the limit

$$\lim_{x\to 0}\frac{\sin x-ax^n}{x^3}$$

exists. What is the value of the limit?