- Topic: Monotonicity
- **Homework:** Watch videos 6.3 6.10 for Tuesday and 6.1, 6.2 for Wednesday.

Given interval \mathbb{I} and f defined on \mathbb{I} .

Give the definition for "f is increasing on \mathbb{I} ".

Theorem

Let $a < b \in \mathbb{R}$. Let f differentiable on (a, b). IF $\forall x \in (a, b), f'(x) > 0$. THEN f is increasing on (a, b).

Is this proof OK?

Theorem

Let $a < b \in \mathbb{R}$. Let f differentiable on (a, b).

 $\mathsf{IF} \ \forall x \in (a,b), \ f'(x) > 0.$

THEN f is increasing on (a, b).

Proof: Assume
$$\forall x \in (a, b), f'(x) > 0$$
.
Let $x_1, x_2 \in (a, b)$. Assume $x_2 > x_1$.
Since $f'(x_1) > 0$, we have $\lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$.
Therefore, $\frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0$.
Since $x_2 - x_1 > 0$, we have $f(x_2) - f(x_1) > 0$ (i.e. $f(x_2) > f(x_1)$ as required.)

Theorem

Let $a < b \in \mathbb{R}$.

- Let f differentiable on (a, b). IF $\forall x \in (a, b), f'(x) < 0$.
- THEN f is decreasing on [a, b].

Prove that, for every $x \ge 0$,

$$\arcsin \frac{1-x}{1+x} + 2 \arctan \sqrt{x} = \frac{\pi}{2}$$

Hint: Take derivatives.

Let
$$g(x) = x^3(x^2 - 4)^{1/3}$$
.

Find out on which intervals this function is increasing or decreasing.

Using that information, sketch its graph.

To save time, here is the first derivative:

$$g'(x) = \frac{x^2(11x^2 - 36)}{3(x^2 - 4)^{2/3}}$$

Prove that, for every $x \in \mathbb{R}$

$$e^x \ge 1 + x$$

Hint: When is the function $f(x) = e^x - 1 - x$ increasing or decreasing?