Today's topics and news

- Topic: Monotonicity
- Homework: Watch videos 6.3-6.10 for Tuesday and 6.1, 6.2 for Wednesday.

Increasing functions

Given interval \mathbb{I} and f defined on \mathbb{I}.
Give the definition for " f is increasing on \mathbb{I} ".
Theorem
Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).

Is this proof OK?

Theorem

Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).
Proof: Assume $\forall x \in(a, b), f^{\prime}(x)>0$.
Let $x_{1}, x_{2} \in(a, b)$. Assume $x_{2}>x_{1}$.
Since $f^{\prime}\left(x_{1}\right)>0$, we have $\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0$.
Therefore, $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}>0$.
Since $x_{2}-x_{1}>0$, we have $f\left(x_{2}\right)-f\left(x_{1}\right)>0$ (i.e. $f\left(x_{2}\right)>f\left(x_{1}\right)$ as required.)

True or false?

Theorem

Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)<0$.
THEN f is decreasing on $[a, b]$.

Proving difficult identities

Prove that, for every $x \geq 0$,

$$
\arcsin \frac{1-x}{1+x}+2 \arctan \sqrt{x}=\frac{\pi}{2}
$$

Hint: Take derivatives.

Intervals of monotonicity

Let $g(x)=x^{3}\left(x^{2}-4\right)^{1 / 3}$.

Find out on which intervals this function is increasing or decreasing.
Using that information, sketch its graph.

To save time, here is the first derivative:

$$
g^{\prime}(x)=\frac{x^{2}\left(11 x^{2}-36\right)}{3\left(x^{2}-4\right)^{2 / 3}}
$$

Inequalities

Prove that, for every $x \in \mathbb{R}$

$$
e^{x} \geq 1+x
$$

Hint: When is the function $f(x)=e^{x}-1-x$ increasing or decreasing?

