Today's topics and news

- Topic: Extrema, Rolle's Theorem, MVT
- Homework: Watch videos 5.10-5.12 for Wednesday.
- PSB has been posted.
- Test 2 will take place November 29th from 4:106:00. Please look on the course website for more details. It will cover up to and until this Wednesday's lecture.

Why doesn't this argument work?

Consider the function

$$
f(x)= \begin{cases}x^{2} & x \neq 0 \\ 1 & x=0\end{cases}
$$

Notice the only critical point of f is $x=0$. To the left of this critical point, $f^{\prime}(x)<0$ and to the right of this critical point, $f^{\prime}(x)>0$.

Therefore, f has a local minimum at $x=0$.

Extrema on a domain of \mathbb{R}

Let $h(x)=x^{4}-2 x^{2}$.
Find the global extrema of h on \mathbb{R}.

Zeroes of the derivative

If possible, construct a function f that is differentiable on \mathbb{R} and such that

- f has exactly 2 zeroes and f^{\prime} has exactly 1 zero.
- f has exactly 2 zeroes and f^{\prime} has exactly 2 zeroes.
- f has exactly 3 zeroes and f^{\prime} has exactly 1 zero.
- f has exactly 1 zero and f^{\prime} has infinitely many zeroes.

How many zeroes?

Let

$$
f(x)=x^{2}-\cos (x)
$$

How many zeroes does f have?
Let

$$
g(x)=x^{2}+\cos (x)
$$

How many zeroes does g have?
Do this question without using any graphing utilities.

A corollary to Rolle's Theorem

Prove:

Theorem 1

Let f be a differentiable function defined on an open interval l.
IF $\forall x \in I, f^{\prime}(x) \neq 0$
THEN f is one-to-one on l.

Roots of a polynomial

Given $n \in \mathbb{N}$.
A polynomial of degree n is a function $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ where
$\forall i=0, \ldots, n, a_{i} \in \mathbb{R}$ and $a_{n} \neq 0$.
Prove a polynomial of degree n can have at most n roots.

Increasing functions

Given interval \mathbb{I} and f defined on \mathbb{I}.
Give the definition for " f is increasing on \mathbb{I} ".
Theorem
Let $a<b \in \mathbb{R}$.
Let f differentiable on (a, b).
IF $\forall x \in(a, b), f^{\prime}(x)>0$.
THEN f is increasing on (a, b).

