- Topic: Local and global extrema
- **Homework:** Watch videos 5.5 5.9 for Tuesday and 5.10 5.12 for Wednesday.

We make the following standard choice of restrictions when we define the inverse trig functions:

•
$$\sin(x)$$
 restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

• $\cos(x)$ restricted to $[0, \pi]$.

- tan(x) restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\operatorname{csc}(x)$ restricted to $\left[-\frac{\pi}{2},0\right) \cup \left(0,\frac{\pi}{2}\right]$.
- sec(x) restricted to $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$.
- $\cot(x)$ restricted to $(0, \pi)$.

Warm-up: developing arctan₂

Let's define $\arctan_2(x)$ as the inverse of the restriction of $\tan(x)$ to the interval $(\frac{\pi}{2}, \frac{3\pi}{2})$. Find the following:

- **1.** The domain and the range of arctan₂.
- **2.** A graph of arctan₂.

3. $tan(arctan_2(12))$, $arctan_2(tan(0))$, $arctan_2(tan(\pi))$, $arctan_2(tan(7))$

4. Compute the derivative of arctan₂. Hint: You can actually do this without computation if you remember the derivative of arctan!

Definition of local extremum

Find local and global extrema of the function with this graph:

Qin Deng

Where is the local extrema?

We know the following about the function h:

- The domain of h is (-4, 4).
- h is continuous on its domain.
- h is differentiable on its domain, except at 0.

•
$$h'(x) = 0 \quad \iff \quad x = -1 \text{ or } 1.$$

What can you conclude about the local extrema of h?

- *h* has a local extrema at x = -1, or 1.
- *h* has a local extrema at x = -1, 0, or 1.
- *h* has a local extrema at x = -4, 1, 0, 1, or 4.
- None of the above.

Let
$$g(x) = x^{2/3}(x-1)^3$$
.

Find local and global extrema of g on [-1, 2].