Today's topics and news

- Topic: Local and global extrema
- Homework: Watch videos 5.5-5.9 for Tuesday and 5.10-5.12 for Wednesday.

Standard choice of restrictions

We make the following standard choice of restrictions when we define the inverse trig functions:

- $\sin (x)$ restricted to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(2) $\cos (x)$ restricted to $[0, \pi]$.
- $\tan (x)$ restricted to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- $\csc (x)$ restricted to $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$.
- $\sec (x)$ restricted to $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$.
- $\cot (x)$ restricted to $(0, \pi)$.

Warm-up: developing $\arctan _{2}$

Let's define $\arctan _{2}(x)$ as the inverse of the restriction of $\tan (x)$ to the interval $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. Find the following:

1. The domain and the range of $\arctan _{2}$.
2. A graph of $\arctan _{2}$.
3. $\tan \left(\arctan _{2}(12)\right), \arctan _{2}(\tan (0)), \arctan _{2}(\tan (\pi))$, $\arctan _{2}(\tan (7))$
4. Compute the derivative of $\arctan _{2}$. Hint: You can actually do this without computation if you remember the derivative of arctan!

Definition of local extremum

Find local and global extrema of the function with this graph:

Where is the local extrema?

We know the following about the function h :

- The domain of h is $(-4,4)$.
- h is continuous on its domain.
- h is differentiable on its domain, except at 0 .
- $h^{\prime}(x)=0 \quad \Longleftrightarrow \quad x=-1$ or 1 .

What can you conclude about the local extrema of h ?

(1) h has a local extrema at $x=-1$, or 1 .
(2) h has a local extrema at $x=-1,0$, or 1 .

- h has a local extrema at $x=-4,1,0,1$, or 4 .
- None of the above.

Fractional exponents

Let $g(x)=x^{2 / 3}(x-1)^{3}$.

Find local and global extrema of g on $[-1,2]$.

