• Topic: one-to-one functions, inverse trig functions

- Topic: one-to-one functions, inverse trig functions
- Homework: Watch videos 5.1 5.4 for Wednesday.

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Let f and g be functions. Assume they each have an inverse.

ls
$$(f \circ g)^{-1} = f^{-1} \circ g^{-1}$$
?

- If YES, prove it.
- If NO, fix the statement.

If you do not know how to start, experiment with the functions

$$f(x) = x + 1,$$
 $g(x) = 2x.$

Composition of one-to-one functions – 2

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Is the following claim TRUE or FALSE? Prove it or give a counterexample.

ClaimLet f and g be functions.IF $f \circ g$ is one-to-one,THEN g is one-to-one.

Let f be one-to-one.

Let $a, b \in \mathbb{R}$ s.t. f(a) = b.

Suppose both f and f^{-1} are three times differentiable.

- 1. Find a formula for $(f^{-1})'(b)$ involving f'(a).
- 2. Find a formula for $(f^{-1})''(b)$ involving f'(a) and f''(a).
- 3. Find a formula for $(f^{-1})'''(b)$.

Composition of one-to-one functions -3

Assume for simplicity that all functions in this problem have domain \mathbb{R} .

Is the following claim TRUE or FALSE? Prove it or give a counterexample.

ClaimLet f and g be functions.IF $f \circ g$ is one-to-one,THEN f is one-to-one.

Here's (part of) the graph of the tan function.

Here's (part of) the graph of the tan function.

Question. Does this function have an inverse?

Qin	Deng

Here's (part of) the graph of the tan function.

Question. Does this function have an inverse? **Problem.** Find the largest interval containing 0 such that the restriction of tan to it is injective.

We define arctan to be the inverse of the function with this graph:

Qin Deng

Sac

In symbols, that means we define the function arctan as the inverse of the function

$$g(x) = an x$$
, restricted to the interval $\left(-rac{\pi}{2},rac{\pi}{2}
ight)$.

э

nac

In symbols, that means we define the function arctan as the inverse of the function

$$g(x)= an x,\,\, ext{restricted}$$
 to the interval $\left(-rac{\pi}{2},rac{\pi}{2}
ight).$

In other words, if $x, y \in \mathbb{R}$, then

$$\operatorname{arctan}(y) = x \quad \Longleftrightarrow \quad \begin{cases} ??? \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ ??? \end{cases}$$

Problem 1. What should be where the question marks are?

In symbols, that means we define the function arctan as the inverse of the function

$$g(x)= an x,\,\, ext{restricted}$$
 to the interval $\left(-rac{\pi}{2},rac{\pi}{2}
ight).$

In other words, if $x, y \in \mathbb{R}$, then

$$\operatorname{arctan}(y) = x \quad \Longleftrightarrow \quad \begin{cases} ??? \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ ??? \end{cases}$$

Problem 1. What should be where the question marks are?

Problem 2. What are the domain and range of arctan?

Problem 3. Sketch the graph of arctan.

Qin Deng

To remind you:

$$\operatorname{arctan}(y) = x \quad \Longleftrightarrow \quad \begin{cases} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \tan x = y \end{cases}$$

э

DQC

To remind you:

$$\operatorname{arctan}(y) = x \quad \Longleftrightarrow \quad \begin{cases} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \tan x = y \end{cases}$$

1

Compute the following values:

- arctan (tan (1))
- arctan (tan (3))
- arctan $\left(\tan\left(\frac{\pi}{2}\right)\right)$

- arctan (tan (-6)))
- tan(arctan(0))
- tan (arctan (10))

- Find $\frac{d}{dx} \arctan(x)$.
- Hint: You should simplify your answer so that it doesn't have any trig/inverse trig functions in them.