Today's topics and news

- Topic: Implicit differentiation, exponential and logarithms, related rates
- Homework: Watch videos 4.1 and 4.2 for Wednesday

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$.
Compute:

1. $h(0)$
2. $h^{\prime}(0)=\left.\frac{d y}{d x}\right|_{x=0, y=0}$
3. $h^{\prime \prime}(0)=\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0, y=0}$
4. $h^{\prime \prime \prime}(0)=\left.\frac{d^{3} y}{d x^{3}}\right|_{x=0, y=0}$

Implicit differentiation

1. What is $\left.\frac{d x}{d y}\right|_{x=0, y=0}$? Make a guess from your previous work and check it by implicit differentiation.
2. What is $\left.\frac{d^{2} x}{d y^{2}}\right|_{x=0, y=0}$?

Exercise: Derivative of the other trig functions

Using the differentiation rules and

$$
\frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x} \cos (x)=-\sin (x)
$$

Find:

1. $\frac{d}{d x} \tan (x)$
2. $\frac{d}{d x} \cot (x)$
3. $\frac{d}{d x} \sec (x)$
4. $\frac{d}{d x} \csc (x)$

Warm-up

Compute the derivatives of the following:

1. $\ln \left[e^{x}+\ln (\ln (x))\right]$
2. $2^{\tan (x)}$
3. $\log _{x+1}\left(x^{2}+1\right)$ Hint: Try using a log identity first.

Multiple choice

The derivative of x^{x} is:
a. x^{x-1}
b. $\ln (x) x^{x}$
c. $(\ln (x)+1) x^{x}$

Logrithmic differentiation

Find $\frac{d y}{d x}$:

1. $y=x^{x^{x}}+1$
2. $x^{y}=x^{2}+y^{x}$

Related rates

Typical related rates problems: If there is a relationship between quantities and you know how one quantity is changing (usually with respect to time), then how does the other quantity change?

Example: You are filling up a perfectly spherical balloon. You inflate it at a rate of $1000 \mathrm{~cm}^{3} / \mathrm{s}$. At what rate is the radius of the balloon changing when the radius of the balloon is 20 cm ?
The formula for the volume of a sphere is $V=\frac{4 \pi r^{3}}{3}$.

Related rates

A 10-meter long ladder is leaning against a vertical wall and sliding. The top end of the ladder is 8 meters high and sliding down at a rate of 1 meter per second. At what rate is the bottom end sliding away from the wall?

Math Halloween party

The MAT137 TAs wanted to rent a disco ball for their upcoming Halloween party. However, since they are poor, they can only afford a flashlight. At the party, one TA is designated the "human disco ball". This TA stands in the centre of the room pointing the flashlight horizontally and spins at 3 revolutions per second. (YES, they are THAT fast.) The room is square with side length 8 meters. At what speed is the light from the flashlight moving across the wall when it is 2 meters away from a corner?

An interesting example

Let $f(x)=x^{2} \sin \frac{1}{x}$.

- Calculate $f^{\prime}(x)$ for any $x \neq 0$.
- Using the definition of derivative, calculate $f^{\prime}(0)$.
- Is f continuous at 0 ?
- Is f differentiable at 0 ?
- Is f^{\prime} continuous at 0 ?

