Today's topics and news

- Topic: Chain rule, trig functions, implicit differentiation
- Homework: Watch videos 3.13-3.20 for Tuesday and 4.1, 4.2 for Wednesday.

Two different limits

Consider a function f differentiable everywhere.
Compute the following limits in terms of $f^{\prime}(x)$.

- $\lim _{h \rightarrow 0} \frac{f(2 x+h)-f(2 x)}{h}$
(2) $\lim _{h \rightarrow 0} \frac{f(2(x+h))-f(2 x)}{h}$

Higher order derivatives of $f \circ g$

Assume f and g have derivatives of all order.
Find formulas for:

1. $(f \circ g)^{\prime}(x)$
2. $(f \circ g)^{\prime \prime}(x)$
3. $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of f, g and their derivatives of any order.

Derivative of cos

Compute the derivative of $\cos (x)$ from the definition of derivative as a limit.

Hint: Write down the limit and try to imitate what was done for $\sin (x)$ in the videos. If you need a trig identity that you do not know, google it or ask your neighbour.

Implicit Differentiation

Function: For each input there is a unique output

Relation: A relationship between several variables with no well-defined idea of an input and an output, in particular no "uniqueness" of output.

Example: $x^{2}+y^{2}=1$ is a relation but not a function.
We can still graph the relation by drawing the curve(s) of all (x, y) satisfying the equation and talk about the "tangent slope" at a given point on the graph.

However, saying something like find $\left.\frac{d y}{d x}\right|_{x=0}$ (usually) doesn't make sense. Why?

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$.
Compute:

1. $h(0)$
2. $h^{\prime}(0)=\left.\frac{d y}{d x}\right|_{x=0, y=0}$
3. $h^{\prime \prime}(0)=\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0, y=0}$
4. $h^{\prime \prime \prime}(0)=\left.\frac{d^{3} y}{d x^{3}}\right|_{x=0, y=0}$

Implicit differentiation

1. What is $\left.\frac{d x}{d y}\right|_{x=0, y=0}$? Make a guess from your previous work and check it by implicit differentiation.
2. What is $\left.\frac{d x^{2}}{d y^{2}}\right|_{x=0, y=0}$?

Exercise: Derivative of the other trig functions

Using the differentiation rules and

$$
\frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x} \cos (x)=-\sin (x)
$$

Find:

1. $\frac{d}{d x} \tan (x)$
2. $\frac{d}{d x} \cot (x)$
3. $\frac{d}{d x} \sec (x)$
4. $\frac{d}{d x} \csc (x)$
