- Topic: Chain rule, Proof of differentiation rules
- Homework: Watch videos 3.11 and 3.12 for Wednesday.

## Intuitive idea of the derivative

Graph the derivative of this function.



## Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and f(0) = 0. Graph f.



Qin Deng

MAT137 Lecture 3.3

## Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and f(0) = 0. Graph f.



- Let  $a \in \mathbb{R}$ .
- Let f be defined in a neighbourhood of a.
- Write the definitions of "f is continuous at a" and "f is differentiable at a" using limits.
- 1. Prove if f is differentiable at a then f is continuous a.
- 2. Show it's not necessarily true that if f is continuous a then f is differentiable a.

Let  $a \in \mathbb{R}$ .

Given a function f defined in a neighbourhood of a. Assume f is continuous at a and  $f(a) \neq 0$ . Prove  $\exists \delta > 0$  s.t.  $\forall x \in (a - \delta, a + \delta), f(x) \neq 0$ . Let  $a \in \mathbb{R}$ .

Given functions f and g defined in a neighbourhood of a. Define  $h(x) = \frac{f(x)}{g(x)}$ . Assume f and g are

Assume \_\_\_\_\_.

Then \_\_\_\_\_ and

Prove this.

1. [1] Did they check  $h(x) = \frac{f(x)}{g(x)}$  is actually defined in a neighbourhood of *a*. (Is it necessary to check this?)

2. [1] Did they start by using the definition of derivatives for h?

3. [1] Can you understand all the steps clearly without having to guess at their meaning?

4. [2] Did they assume at some point a function is differentiable? If so, did they justify it?

5. [1] Did they assume at some point a function is continuous? If so, did they justify it? (This has to come up in the proof somewhere.)

6. [2] Does the proof work?

Compute the derivative of the following (do not worry too much about the domain):

1. 
$$f(x) = \sqrt{2x^2 + x + 1}$$
  
2.  $g(x) = \sqrt{x + \sqrt{x + \sqrt{x + 1}}}$