Today's topics and news

- Topic: Chain rule, Proof of differentiation rules
- Homework: Watch videos 3.11 and 3.12 for Wednesday.

Intuitive idea of the derivative

Graph the derivative of this function.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Warm-up: differentiability implies continuity

Let $a \in \mathbb{R}$.
Let f be defined in a neighbourhood of a.
Write the definitions of " f is continuous at a " and " f is differentiable at $a^{"}$ using limits.

1. Prove if f is differentiable at a then f is continuous a.
2. Show it's not necessarily true that if f is continuous a then f is differentiable a.

A lemma

Let $a \in \mathbb{R}$.
Given a function f defined in a neighbourhood of a.
Assume f is continuous at a and $f(a) \neq 0$.
Prove $\exists \delta>0$ s.t. $\forall x \in(a-\delta, a+\delta), f(x) \neq 0$.

Quotient rule

Let $a \in \mathbb{R}$.

Given functions f and g defined in a neighbourhood of a.
Define $h(x)=\frac{f(x)}{g(x)}$.
Assume f and g are
Assume \qquad .

Then __ and

Prove this.

Grade your partner's proof (out of 8)

1. [1] Did they check $h(x)=\frac{f(x)}{g(x)}$ is actually defined in a neighbourhood of a. (Is it necessary to check this?)
2. [1] Did they start by using the definition of derivatives for h ?
3. [1] Can you understand all the steps clearly without having to guess at their meaning?
4. [2] Did they assume at some point a function is differentiable? If so, did they justify it?
5. [1] Did they assume at some point a function is continuous? If so, did they justify it? (This has to come up in the proof somewhere.)
6. [2] Does the proof work?

Warm-up

Compute the derivative of the following (do not worry too much about the domain):

1. $f(x)=\sqrt{2 x^{2}+x+1}$
2. $g(x)=\sqrt{x+\sqrt{x+\sqrt{x+1}}}$
