Today's topics and news

- Topic: Some limit computations, IVT, EVT, definition of derivatives
- Homework: Watch videos 3.4, 3.5 and 3.8 for tomorrow.

Computations

Compute:

1. $\lim _{x \rightarrow 2} \frac{\left|x^{2}-4\right|}{x^{2}-5 x+6}$
2. $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{\sqrt{x}-2}$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
4. $\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}$
5. $\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x}$

Computations

Compute:

1. $\lim _{x \rightarrow 2} \frac{\left|x^{2}-4\right|}{x^{2}-5 x+6}$ Hint: Calculate left/right limits to get rid of absolute value sign.
2. $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{\sqrt{x}-2}$ Hint: Try multiplying and dividing by the conjugate of the denominator.
3. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$ Hint: Try factoring out the dominant term from the numerator and the denominator.
4. $\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}$ Hint: You can tell what this goes to by looking at the two limits separately.
5. $\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x}$ Hint: Try multiplying and dividing by the conjugate.

Computations using limit laws

Given a function g s.t.

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=2
$$

Use it to compute the following limits (or explain that they don't exist).

1. $\lim _{x \rightarrow 0} \frac{g(x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{g(x)}{x^{4}}$
3. $\lim _{x \rightarrow 0} \frac{g(3 x)}{x^{2}}$

Definition of maximum

Let f be a function with domain l.
Which one (or ones) of the following is (or are) a definition of
" f has a maximum on I "?

- $\forall x \in I, \exists C \in \mathbb{R}$ s.t. $f(x) \leq C$
- $\exists C \in I$ s.t. $\forall x \in I, f(x) \leq C$
- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x) \leq C$
- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x)<C$

More on the definition of maximum

Let f be a function with domain l.
What does each of the following mean?

- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x) \leq C$
- $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x)<C$
- $\exists a \in I$ s.t. $\forall x \in I, f(x) \leq f(a)$
- $\exists a \in I$ s.t. $\forall x \in I, f(x)<f(a)$

EVT is best possible?

Recall the statement of EVT.
Find/draw a continuous function f which is continuous on $[0,1)$ which doesn't have a maximum.

Find/draw a continuous function f which is continuous on $[0,1)$ which has neither a maximum nor a minimum.

Can this be proven? (Use IVT)

(1) Prove that at some point in your life your height was exactly 1 m .
(2) Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.

- During a Raptors basketball game, at half time the Raptors have 51 points. Prove that at some point they had exactly 26 points.

Existence

Prove that the equation

$$
x^{4}-2 x=100
$$

has at least two solutions.

A quick tangent line

What is the equation of the line tangent to the graph of $y=x$ at the point with x-coordinate 7 ?

- $y=x+7$
(3) $y=x$
- $y=7$
- $x=7$
- There is no tangent line at that point.
- There is more than one tangent line at that point.

Absolute value and tangent lines

At $(0,0)$ the graph of $y=|x| \ldots$

- ... has one tangent line: $y=0$
- ... has one tangent line: $x=0$
- ... has two tangent lines $y=x$ and $y=-x$
- ... has no tangent line

Absolute value and derivatives

Let $h(x)=x|x|$. What is $h^{\prime}(0)$?

- It is 0 .
- It does not exist because $|x|$ is not differentiable at 0 .
- It does not exist because the right- and left-limits, when computing the derivative, are different.
- It does not exist because it has a corner.

Intuitive idea of the derivative

Graph the derivative of this function.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Intuitive idea of the derivative

Below is the graph of the derivative of some function f. We know f is continuous and $f(0)=0$. Graph f.

Derivatives from the definition

Let

$$
g(x)=\frac{2}{\sqrt{x}}
$$

Calculate $g^{\prime}(4)$ directly from the definition of derivative as a limit.

Estimations

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: Consider the values you know for $f(x)=\sqrt[20]{x}$ and its derivative.

