Today's topics and news

- Topic: More proofs, limit computations
- Homework: Watch videos 2.21, 2.21, and 3.1-3.3 for next Tuesday and 3.4, 3.5 and 3.8 for Wednesday.
- Test 1 covers up until and including today's lecture (i.e. video 2.20).
- PS A has been posted. It is for practice only. I strongly recommend that you work on it in preparation for the test.

Behaviour of limits under composition

Yesterday we saw this theorem:
Theorem: limit "commutes" with continuous functions
IF $\lim _{x \rightarrow a} g(x)$ exists and f is continuous at $\lim _{x \rightarrow a} g(x)$.
THEN $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.
We might want to know what happens if f is not continuous and there are in fact certain scenarios where we can still say something.

Behaviour of limits under composition

Let f be a function defined on an open neighbourhood of 10 , except possibily at 10 .
Suppose $\lim _{x \rightarrow 10} f(x)=2$.
What can you say about the following:

- $\lim _{x \rightarrow 2} f(5 x)$?
(2) $\lim _{x \rightarrow 2} 5 f(x)$?

Notice (1) is not an application of yesterday's theorem because we are not assuming continuity of $f(x)$.

Behaviour of limits under composition

Fill in the blank and then prove the claim.

Claim

Let $a, L \in \mathbb{R}$.
Let f be a function defined on a punctured neighbourhood of a (i.e on some open neighbourhood of a, except possibly at a).
If $\lim _{x \rightarrow a} f(x)=L$
Then $\lim _{x \rightarrow \frac{e}{5}} 2 f(5 x)=$

Computations

Suppose $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow \frac{a}{k}} f(k x)=L$.
Compute:

1. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$

Computations using limit laws

Given a function g s.t.

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=2
$$

Use it to compute the following limits (or explain that they don't exist).

1. $\lim _{x \rightarrow 0} \frac{g(x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{g(x)}{x^{4}}$
3. $\lim _{x \rightarrow 0} \frac{g(3 x)}{x^{2}}$

Computations

Compute:

1. $\lim _{x \rightarrow 2} \frac{\left|x^{2}-4\right|}{x^{2}-5 x+6}$
2. $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{\sqrt{x}-2}$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
4. $\lim _{x \rightarrow-\infty} x-\sqrt{x^{2}+x}$
5. $\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x}$
