Today's topics and news

- Topic: Continuity
- Homework: Watch videos 2.19 and 2.20 for next Wednesday.
- Test 1 takes place next Friday from 4-6PM. If you have conflict please follow the the instructions on the test 1 instruction page on the main course website.

Another squeeze theorem

Another squeeze theorem

Let $a \in \mathbb{R}$. Let f and g be functions defined near a, except possibly at a.
IF

- $\exists p>0$ s.t. $0<|x-a|<p \Longrightarrow f(x) \geq g(x)$.
- $\lim _{x \rightarrow a} g(x)=\infty$.

THEN

- $\lim _{x \rightarrow a} f(x)=\infty$.

Prove this theorem.
Hint: The proof of this theorem is similar to but easier than the standard squeeze theorem. Write down the relevant $M-\delta$ definitions and try to prove one from the other.

Continuity

For a function f defined on an open interval of a, we say $f(x)$ is cts at a iff

Definition 1

$\lim _{x \rightarrow a} f(x)=f(a)$
This is clearly equivalently to

Definition 2

$\forall \epsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon$.
Slightly less clearly, it is also equivalent to

Definition 3

$\forall \epsilon>0, \exists \delta>0$ s.t. $|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\epsilon$.

Continuity on different sets

Continuous at a point

f continuous at c means $\lim _{x \rightarrow c} f(x)=f(c)$.

Continuous on an open interval

f continuous on the interval (a, b) means $\forall c \in(a, b), f$ is continuous at c.

Continuous on a closed interval

f continuous on the interval $[a, b]$ means
(1) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$
(2) $\forall c \in(a, b), f$ is continuous at c
(3) $\lim _{x \rightarrow b^{-}} f(x)=f(b)$

Dirichlet function

Consider the Dirichlet function

$$
D(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

1. Write the definition of $\lim _{x \rightarrow 0} D(x) \neq 0.5$.
2. Prove it.
3. Write the definition of $\lim _{x \rightarrow 0} D(x)$ DNE.
4. Exercise: Prove 3.

Continuity examples

Find examples of a function defined on \mathbb{R} satisfying the following conditions:

1. $f(x)$ is continuous on \mathbb{R}.
2. $g(x)$ is continuous at every $c \in \mathbb{R} \backslash\{0\}$ and discontinuous at 0 .
3. $h(x)$ is discontinuous at every $c \in \mathbb{R}$.
4. $m(x)$ is continuous at 0 and discontinuous at every $c \in \mathbb{R}$.
Hint: Try adjusting the Dirichlet function.

Behaviour of limits under composition

From examples we've seen before, in general, it is not true that

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right) .
$$

However, the statement does become true if f is continuous (at $\lim _{x \rightarrow a} g(x)$).

Theorem: limit "commutes" with continuous functions
IF $\lim _{x \rightarrow a} g(x)$ exists and f is continuous at $\lim _{x \rightarrow a} g(x)$. THEN $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

Behaviour of limits under composition

Prove the theorem (assume for simplicity that f and g are defined on \mathbb{R}).

Theorem: limit "commutes" with continuous functions

IF $\lim _{x \rightarrow a} g(x)$ exists and f is continuous at $\lim _{x \rightarrow a} g(x)$.
THEN $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

1. For simplicity of writing let L be $\lim _{x \rightarrow a} g(x)$. Write down your two assumptions in $\epsilon-\delta$ form.
2. Write down what you are trying to prove $\lim _{x \rightarrow a} f(g(x))=f(L)$ in $\epsilon-\delta$ form.
3. Prove it. Hint: You are going to have to use the δ you get from one of your assumptions as the ϵ in the other assumption.
