Today's topics and news

- Topic: Squeeze theorem, more limit proofs
- Homework: Watch videos 2.14-2.18 for next Tuesday. Watch videos 2.19 and 2.20 for next Wednesday.
- Reminder: PS2 is due next Thursday.

Limit laws warm-up

Are the following the same?

- $\lim _{x \rightarrow 0^{+}} \frac{1}{x}-\lim _{x \rightarrow 0^{+}} \frac{1}{x}$
- $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{x}\right)$

Indeterminate form

Let $a \in \mathbb{R}$.
Let f and g be functions defined near a.
Assume $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$.
What can we conclude about $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$?
(1) The limit is 1 because the $0 s$ cancel.
(2) The limit does not exist because it's $\frac{0}{0}$.

- We do not have enough information to decide.

True or False?

True or false?

Claim

Let $a \in \mathbb{R}$.
Let f and g be functions defined near a.

- IF $\lim _{x \rightarrow a} f(x)=0$,
- THEN $\lim _{x \rightarrow a}[f(x) g(x)]=0$.

Theorem

Definition

Given a function f defined on some domain $D \subseteq \mathbb{R}$. We say f is bounded iff $\exists M \in \mathbb{R}$ s.t. $\forall x \in D,|f(x)|<M$.

Prove the following claim:

Claim

Let $a \in \mathbb{R}$.
Let f and g be functions defined near a. Let g be bounded.

- IF $\lim _{x \rightarrow a} f(x)=0$,
- THEN $\lim _{x \rightarrow a}[f(x) g(x)]=0$.

Hint: Bound $f(x) g(x)$ by appropriate functions, use the squeeze theorem.

Another squeeze theorem

Another squeeze theorem

Let $a \in \mathbb{R}$. Let f and g be functions defined near a, except possibly at a.
IF

- For x close to a but not $a, f(x) \geq g(x)$.
- $\lim _{x \rightarrow a} g(x)=\infty$.

THEN

- $\lim _{x \rightarrow a} f(x)=\infty$.

Another squeeze theorem

Another squeeze theorem

Let $a \in \mathbb{R}$. Let f and g be functions defined near a, except possibly at a.
IF

- $\exists p>0$ s.t. $0<|x-a|<p \Longrightarrow f(x) \geq g(x)$.
- $\lim _{x \rightarrow a} g(x)=\infty$.

THEN

- $\lim _{x \rightarrow a} f(x)=\infty$.

Prove this theorem.
Hint: The proof of this theorem is similar to but easier than the standard squeeze theorem. Write down the relevant $M-\delta$ definitions and try to prove one from the other.

