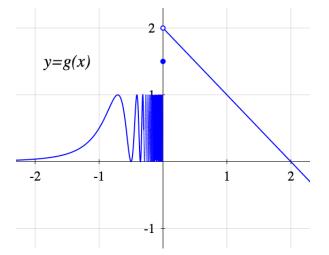
- Topic: Definition of a limit
- **Homework:** Watch videos 2.7 2.11 for next Tuesday. Watch videos 2.12 and 2.13 for next Wednesday.

Given a real number x, we defined the *floor of* x, denoted by $\lfloor x \rfloor$, as the largest integer smaller than or equal to x. For example:

$$\lfloor \pi
floor = 3, \qquad \lfloor 7
floor = 7, \qquad \lfloor -0.5
floor = -1.$$

Sketch the graph of $y = \lfloor x \rfloor$. Then compute:

More limits from a graph



Find the value of $\lim_{x\to 0^+}g(x)$ $\lim_{x\to 0^+} \lfloor g(x) \rfloor$ $\lim_{x\to 0^+} g(\lfloor x \rfloor)$ $\lim_{x\to 0^-} g(x)$ $\lim_{x\to 0^-} \lfloor g(x) \rfloor$ $\lim_{x\to 0^-} \lfloor \frac{g(x)}{2} \rfloor$ $\lim_{x\to 0^-} g(\lfloor x \rfloor)$

Definition of a limit

Given $a, L \in \mathbb{R}$ and

f a function defined in an open interval around *a*, except possibly at *a*, we say that $\lim_{x \to a} f(x) = L$ iff $\forall \epsilon > 0, \exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

Translation of $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$.

- $\forall \epsilon > 0$ $\exists \delta > 0 \text{ s.t.}$
- "If I give you any distance ϵ ..." "... you can find a distance δ such that..." $0 < |x - a| < \delta \implies$ "... if x is within δ of (but not equal to) a..." $|f(x) - L| < \epsilon$. "... then f(x) is within ϵ of L."

Given $a, L \in \mathbb{R}$. Write down the definition of $\lim_{x \to a^+} f(x) = L$. Exercise: Write down the definition of $\lim_{x \to a^-} f(x) = L$. Given $a \in \mathbb{R}$.

Write down the definition of the following statments:

- 1. $\lim_{x \to a} f(x)$ exists.
- 2. $\lim_{x \to a} f(x)$ does not exist.

Given $a, L \in \mathbb{R}$.

Write down the definition of the following statments:

1.
$$\lim_{x\to a} f(x) = \infty.$$

2. $\lim_{x\to\infty} f(x) = L.$

Hint: For 1, you want to replace the two parts with ϵ in the $\epsilon - \delta$ definition for limits. Instead of saying f(x) gets arbitrarily close to L as x gets close to a, you want to say f(x) gets arbitrarily large. How can you do this?