Today's topics and news

- Topic: Direct proofs and proofs by induction
- Homework: Watch videos 2.1-2.4 for next Tuesday. Watch videos 2.5 and 2.6 for next Wednesday.

Proof exercise

Exercise

Prove: The sum of any two odd numbers is even (i.e. $\forall x, y \in \mathbb{R}, x, y$ are odd $\Longrightarrow x+y$ is even $)$.

Order matters!

True or false:

(1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ s.t. $x+y=0$
(2) $\exists y \in \mathbb{R}$ s.t. $\forall x \in \mathbb{R}, x+y=0$

Proof exercise

Exercise

Prove $\exists y \in \mathbb{R}$ s.t. $\forall x \in \mathbb{R}, x+y=0$ is false.
Hint: Try to prove the negation (is true).
Homework
Prove $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ s.t. $x+y=0$ (is true).

Standard induction

Standard induction

We have statements S_{n} dependent on a positive integer n. To prove $\forall n \in \mathbb{Z}_{+}, S_{n}$ is true using standard induction we need to prove the following two statements:
(1) Base case: S_{1} is true.
(2 Induction step: " $\forall n \geq 1, S_{n} \Longrightarrow S_{n+1}$ " is true.
For example, S_{n} can be the statement

$$
" 1+2+\ldots+n=\frac{(n)(n+1)}{2} "
$$

What if?

If you managed to show the following instead, what can you prove?

Non-standard induction 1
(1) S_{3} is true.
(2) " $\forall n>0, S_{n} \Longrightarrow S_{n+1}$ " is true.

Non-standard induction 2

(1) S_{1} is true.
(2) " $\forall n>1, S_{n} \Longrightarrow S_{n+1}$ " is true.

What if?

Non-standard induction 3

(1) S_{1} is true.
(2) " $\forall n>0, S_{n} \Longrightarrow S_{n+3}$ " is true.

Nonstandard induction 4

(1) S_{7} is true.
(2) " $\forall n>3, S_{n+1} \Longrightarrow S_{n}$ " is true.

What if?

Non-standard induction 3

- S_{1} is true.
(2) " $\forall n>0, S_{n} \Longrightarrow S_{n+3}$ " is true.

What else do I need to prove to show S_{n} is true for all positive integers n ?

All 0s?

Theorem

$\forall N \in \mathbb{N}$, in every set of N MAT137 students, those students will get the same grade.

Proof.

- Base case. It is clearly true for $N=1$.
- Induction step.

Assume it is true for N. I'll show it is true for $N+1$.
Take a set of $N+1$ students. By induction hypothesis:

- The first N students have the same grade.
- The last N students have the same grade.

Hence the $N+1$ students all have the same grade as well.

