Today's topics and news

- Topic: Negation, conditionals, definitions, and proofs
- Homework: Watch videos 1.14 and 1.15 for Wednesday.

Negation, more examples

Negate the following statements.

- Every student at UofT has a cellphone.
- There is a country in the European Union with fewer than 1000 inhabitants.
- I like math and physics.
- Everyone in this class likes math and physics .

Negation, a harder example

Negation example

Negate "Every page in this book contains at least one word whose first and last letters both come alphabetically before M".

Hint: Try re-writing this sentence with a clause for each quantifier. For example, re-write this sentence starting with "For every page in this book, ... ". After you do this, negate systematically.

Am I lying?

I tell you: "If you get 80% or more on your first term test, then I will give you a piece of chocolate."

In which of the following scenarios would I have lied (i.e. said something false)?
(1) You get 80% on your test, and I give you a piece of chocolate.
(2) You get 70% on your test, and I don't give you a piece of chocolate.
(3) You get 100% on your test, and I don't give you a piece of chocolate.
(9) You get 60% on your test, and I give you a piece of chocolate.
(3) I give everybody a piece of chocolate after the marks are out.
(0) You get 60% on your test.

My cards are on the table

Every card on the table has a number on one side and a letter on the other side.

I tell you: "(For all the cards on the table.) If a card has a vowel on one side then it must have an even number on the other side."

You see 4 cards with " B ", " 7 ", " 8 ", " A ".
Which cards do you have to turn over to make sure I'm telling the truth?

My cards are on the table

What is the negation of the statement:
"(For all the cards on the table.) If a card has a vowel on one side then it must have an even number on the other side."
(1) "If a card has a vowel on one side then it must have an odd number on the other side."
(2) "If a card has a consonant on one side then it must have an even number on the other side."
(3) "If a card has a consonant on one side then it must have an odd number on the other side."
(9) "There is a card with a vowel on one side and an odd number on the other side."

Mathier conditionals

True or false?

(1) $\forall x \in \mathbb{R}, x>0 \Longrightarrow x \geq 0$.
(2) $\forall x \in \mathbb{R}, x \geq 0 \Longrightarrow x>0$.

Definition

Even and Odd

For $x \in \mathbb{R}$, give a mathematical definition for the statements " x is an even number". Do the same for the statement " x is an odd number".

A theorem about odd and even numbers

Claim

The sum of two odd numbers is even.
This should be interpreted as "The sum of any two odd numbers is even.

Claim

$\forall x, y \in \mathbb{R}, x, y$ are odd $\Longrightarrow x+y$ is even.

Bad proof

Claim

The sum of any two odd numbers is even.
Proof
1 is odd.3 is odd.

$$
1+3=4 \text { is even. }
$$

Bad proof

Claim

The sum of any two odd numbers is even.
Proof
For all n :
EVEN + EVEN = EVEN
EVEN + ODD = ODD
ODD + ODD = EVEN

Bad proof

Claim

The sum of any two odd numbers is even.

Proof
 $(2 a+1)+(2 b+1)=2 a+2 b+2$ is even.

Proof exercise

Exercise

Prove: The sum of any two odd numbers is even (i.e. $\forall x, y \in \mathbb{R}, x, y$ are odd $\Longrightarrow x+y$ is even $)$.

Order matters!

True or false:

(1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ s.t. $x+y=0$
(2) $\exists y \in \mathbb{R}$ s.t. $\forall x \in \mathbb{R}, x+y=0$

Proof exercise

Exercise

Prove $\exists y \in \mathbb{R}$ s.t. $\forall x \in \mathbb{R}, x+y=0$ is false.
Hint: Try to prove the negation (is true).
Homework
Prove $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ s.t. $x+y=0$ (is true).

