Today's topics and news

Topic: Taylor series applications

Taylor series gymnastics

Write the following functions in a way where you can easily find their Maclaurin series using series you already know.

- $f(x)=\frac{x^{2}}{1+x}$
(2) $f(x)=\left(e^{x}\right)^{2}$
- $f(x)=\sin \left(2 x^{3}\right)$
- $f(x)=\cos ^{2} x$
- $f(x)=\ln \frac{1+x}{1-x}$
- $f(x)=\frac{1}{\left(1+x^{2}\right)(1+x)}$

Note: You do not need to take any derivatives. You can reduce them all to other Maclaurin series you know.

Add these series

- $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$
($\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$
- $\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n)!}$
- $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

Add these series

- $\sum_{n=2}^{\infty} \frac{(-2)^{n}}{(2 n+1)!}$

Hint: Think of sin
($\sum_{n=0}^{\infty}(4 n+1) x^{4 n+2}$
Hint: $\frac{d}{d x}\left[x^{4 n+1}\right]=? ? ?$

- $\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n)!}$

Hint: Write the first few terms. Combine e^{x} and e^{-x}

- $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!(n+1)}$

Hint: Integrate

Limits

Compute these limits by writing out the first few terms of the Maclaurin series of numerator and denominator:
(1) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(2) $\lim _{x \rightarrow 0} \frac{6 \sin x-6 x+x^{3}}{x^{5}}$
-

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x \sin (x)}{\ln (1+x)^{4}}
$$

Limits

Find a value of $a \in \mathbb{R}$ such that the limit

$$
\lim _{x \rightarrow 0} \frac{e^{\sin x}-e^{x}+a x^{3}}{x^{4}}
$$

exists and is not 0 . Then compute the limit.

Outroduction

