Today's topics and news

- Topic: New power series, Taylor series applications

Homework: Nothing! Just come enjoy the show.

Power series warm-up

Suppose $\sum_{n=0}^{\infty}\left[a_{n}(x-1)^{n}\right]$ has an interval of convergence of $(0,2$]. Write the interval of convergence of the following series.

- $\sum_{n=0}^{\infty}\left[2 a_{n}(x-1)^{n}\right]$.
- $\sum_{n=0}^{\infty}\left[a_{n} x^{n}\right]$.
- $\sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{2^{n}} a_{n}(x-1)^{n}\right]$.
- $\sum_{n=0}^{\infty}\left[a_{n}(x-1)^{2 n}\right]$.

Review: what's wrong with the following computation?

Let us find the Taylor series for $\cos (x)$ with the Taylor series for $\sin (x)$. We know $\cos (x)=\int \sin (x) d x$ so:

$$
\begin{aligned}
\cos (x) & =\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} d x \\
& =\sum_{n=0}^{\infty} \int \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2}}{(2 n+2)!}
\end{aligned}
$$

Fix this computation.

Arctan

(1) Write the function

$$
f(x)=\arctan x
$$

as a power series centered at 0 .
Hint: Compute the first derivative. Then stop to think.
(2) What is $f^{(2019)}(0)$?

Maclaurin series and derivatives at 0

Let f be an analytic function defined on some interval centred at 0 . We define a new function g via the equation $g(x)=f\left(x^{2}\right)$.

Find $g^{(n)}(0)$ in terms of the derivatives of f at 0 .
Hint: Write a Maclaurin series for g in two different ways.

Integrals

Consider the function

$$
F(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

It is not possible to find an elementary antiderivative.
(- Write $F(x)$ as a power series.
(2) Estimate $F(1)$ with an error smaller than 0.01 . (Hint: How do you bound the error of an alternating series?)

