Today's topics and news

- Topic: Taylor polynomials
- Homework: Watch videos 14.5-14.8 for next Tuesday and 14.9, 14.10 for next Wednesday.

What can you conclude?

Think of the power series $\sum_{n} a_{n} x^{n}$. Do not assume $a_{n} \geq 0$. In each case, may the given series be absolutely convergent (AC)? conditionally convergent (CC)? divergent (D)? all of them?

IF	$\sum_{n} a_{n} 3^{n}$ is \ldots	AC	CC	D
THEN	$\sum_{n} a_{n} 2^{n}$ may be \ldots	$? ? ?$	$? ? ?$	$? ? ?$
	$\sum_{n} a_{n}(-3)^{n}$ may be ...	$? ? ?$	$? ? ?$	$? ? ?$
	$\sum_{n} a_{n} 4^{n}$ may be ...	???	$? ? ?$	$? ? ?$

Different types of convergence on the boundary of IC

In the previous slide, we ruled out several combinations of convergence and divergence behaviour that can happen on the boundary of IC. We are going to now see that the rest is possible. Match each power series with what we know about its convergence:
(1) IC $=[-1,1], \mathrm{AC}$ at -1 , and AC at 1
(2) IC $=[-1,1], \mathrm{CC}$ at -1 , and CC at 1
(3) IC $=(-1,1]$
(4) $\mathrm{IC}=[-1,1)$
(6) $\mathrm{IC}=(-1,1)$
(6) $\mathrm{IC}=\mathbb{R}$
(1) IC $=\{0\}$
(e) $\sum_{n} n!x^{n}$
(c) $\sum_{n} \frac{1}{n} x^{n}$
(c) $\sum_{n} \frac{1}{n^{2}} x^{n}$
(c) $\sum_{n} \frac{1}{n!} x^{n}$
(e) $\sum_{n} x^{n}$
(9) $\sum_{n} \frac{(-1)^{n}}{n} x^{n}$

Different centres and radii of convergence

By changing the previous examples (c), give a power series which satisfies the following:

- IC $=[0,2]$
(2) $\mathrm{IC}=[-2,2]$
($\mathrm{IC}=[-1,0]$
Hint: For 2, change the coefficients of (c) a little.

The definitions of Taylor polynomial

Let f be a function defined at and near $a \in \mathbb{R}$. Let $n \in \mathbb{N}$.
Let P_{n} be the n-th Taylor polynomial for f at a.
Which ones of these is true?
(1) P_{n} is an approximation for f of order n near a.
(2) f is an approximation for P_{n} of order n near a.
(3) $\lim _{x \rightarrow a}\left[f(x)-P_{n}(x)\right]=0$
(9) $\lim _{x \rightarrow a} \frac{f(x)-P_{n}(x)}{(x-a)^{n}}=0$
(5) \exists a function R_{n} s.t. $f(x)=P_{n}(x)+R_{n}(x)$ and $\lim _{x \rightarrow a} \frac{R_{n}(x)}{(x-a)^{n}}=0$
(0) $f^{(n)}(a)=P_{n}^{(n)}(a)$
(3) $\forall k=0,1,2, \ldots, n, \quad f^{(k)}(a)=P_{n}^{(k)}(a)$
(8) If x is close to a, then $f(x)=P_{n}(x)$.

True or False - C^{n} functions

(1) If f and g are C^{n} functions, then $f+g$ is a C^{n} function.
(2) f is continuous if and only if f is C^{0}.
(0) f is differentiable if and only if f is C^{1}.

- If f is a C^{n} function, then f is a C^{n-1} function.
- If f is C^{n} at a, then f is C^{n} on some interval centered at a.
- If f is C^{n} at a, then f is C^{n-1} on some interval centered at a.

