• Topic: Properties of series, divergence test/necessary condition

- Topic: Properties of series, divergence test/necessary condition
- Homework: Watch videos 13.10 13.14 for Tuesday and 13.15 13.17 for Wednesday.

Geometric series

Calculate the value of the following series:

•
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$$

• $\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - \dots$
• $\frac{3}{2} - \frac{9}{4} + \frac{27}{8} - \frac{81}{16} + \dots$
• $\sum_{n=k}^{\infty} x^n$

True or False – The Necessary Condition

• IF
$$\lim_{n \to \infty} a_n = 0$$
, THEN $\sum_{n=1}^{\infty} a_n$ is convergent.
• IF $\lim_{n \to \infty} a_n \neq 0$, THEN $\sum_{n=1}^{\infty} a_n$ is divergent.
• IF $\sum_{n=1}^{\infty} a_n$ is convergent THEN $\lim_{n \to \infty} a_n = 0$.
• IF $\sum_{n=1}^{\infty} a_n$ is divergent THEN $\lim_{n \to \infty} a_n \neq 0$.

Warm-up

Does the series $\sum_{n=1}^{\infty} n \sin(\frac{1}{n})$ converge or diverge?

Warm-up

Does the series $\sum_{n=1}^{\infty} n \sin(\frac{1}{n})$ converge or diverge?

- Divergence test/necessary condition is the first convergence test you have learned for series. We will learn 6 more (depending on how you count). Keep the list in your mind.
- There is a similar statement to the necessary condition for type 1 improper integrals as well: Let f be continuous on [a, ∞). IF ∫_a[∞] f(x)dx converges THEN lim f(x) = 0 or DNE. (Note you cannot rule out the limit DNE unlike the case for series.)

True or False – Series

Let
$$\sum_{n=0}^{\infty} a_n$$
 be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.
• IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $a_n > 100$
• IF the series $\sum_{n=0}^{\infty} a_n$ is divergent, THEN $\exists n \in \mathbb{N}$ such that $S_n > 100$
• IF the series $\sum_{n=0}^{\infty} a_n$ converges
THEN the series $\sum_{n=100}^{\infty} a_n$ converges to a smaller number.
• IF the series $\sum_{n=0}^{\infty} a_n$ converges
THEN the series $\sum_{n=0}^{\infty} a_n$ converges
TH

True or False – Series

- Let $\sum_{n=0}^{\infty} a_n$ be a series. Let $\{S_n\}_{n=0}^{\infty}$ be its partial-sum sequence.
 - So IF the sequence $\{S_n\}_{n=0}^{\infty}$ is bounded and eventually monotonic, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.
 - IF the sequence $\{S_n\}_{n=0}^{\infty}$ is increasing, THEN $\forall n \ge 0, a_n > 0$.

• IF
$$\lim_{n\to\infty} a_n = 0$$
, THEN the series $\sum_{n=0}^{\infty} a_n$ is convergent.

3 IF the series
$$\sum_{n=0}^{\infty} a_n$$
 is convergent, THEN $\lim_{n\to\infty} a_n = 0$.