Today's topics and news

Topic: Improper integrals, basic comparison for improper integrals

Today's topics and news

- Topic: Improper integrals, basic comparison for improper integrals
- Homework: Watch videos 12.9 and 12.10 for Wednesday.

Refining the Big Theorem

We know from the Big Theorem that

The Big Theorem

$$
\ln (n) \ll n^{a} \ll c^{n} \ll n!\ll n^{n}
$$

for every $a>0, c>1$.
There are actually lots of sequences in between each of these.
Exercise: Construct new sequencse $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ such that, for every $a>0$ and for every $c>1$,

$$
u_{n} \ll \ln (n) \ll v_{n} \ll n^{a} \ll w_{n} \ll c^{n} \ll x_{n} \ll n!\ll y_{n} \ll n^{n} \ll z_{n}
$$

Refining the Big Theorem

(1) Construct a sequence $\left\{u_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a<2, & n^{a} \ll u_{n} \\ \forall a \geq 2, & u_{n} \ll n^{a}\end{cases}
$$

(3) Construct a sequence $\left\{v_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a \leq 2, & n^{a} \ll v_{n} \\ \forall a>2, & v_{n} \ll n^{a}\end{cases}
$$

Recall the definitions

(1) Let f be a bounded, continuous function on $[c, \infty)$. How do we define the improper integral

$$
\int_{c}^{\infty} f(x) d x ?
$$

(2) Let f be a continuous function on $(a, b]$. How do we define the improper integral

$$
\int_{a}^{b} f(x) d x ?
$$

Computation

Calculate, using the definition of improper integral

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x} d x
$$

Warm-up

Is there a difference between:

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow \infty \\
\text { and }}} x-\lim _{x \rightarrow \infty} x \\
&
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty}(x-x) ?
$$

A "simple" integral

What is $\int_{-1}^{1} \frac{1}{x} d x \quad$?

A "simple" integral

What is $\int_{-1}^{1} \frac{1}{x} d x$?

- $\int_{-1}^{1} \frac{1}{x} d x=\left.(\ln |x|)\right|_{-1} ^{1}=\ln |1|-\ln |-1|=0$
- $\int_{-1}^{1} \frac{1}{x} d x=0$ because $f(x)=\frac{1}{x}$ is an odd function.
- $\int_{-1}^{1} \frac{1}{x} d x$ is divergent.

The most important improper integrals

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.

- $\int_{1}^{\infty} \frac{1}{x^{p}} d x$
(2) $\int_{0}^{1} \frac{1}{x^{p}} d x$
- $\int_{0}^{\infty} \frac{1}{x^{p}} d x$

Computation

Does $\int_{0}^{\infty} \frac{1}{x^{2}-3 x+2}$ converge or diverge?
(1) Write down the definition of this improper integral.
(2) Compute the improper integral from the definition.

A simple BCT application

We want to determine whether $\int_{1}^{\infty} \frac{1}{x+e^{x}} d x$ is convergent or divergent.

We can try at least two comparisons:

- Compare $\frac{1}{x}$ and $\frac{1}{x+e^{x}}$.
(2 Compare $\frac{1}{e^{x}}$ and $\frac{1}{x+e^{x}}$.
Try both. What can you conclude from each one of them?

A simple BCT application

We want to determine whether $\int_{1}^{\infty} \frac{1}{x+e^{x}} d x$ is convergent or divergent.

We can try at least two comparisons:

- Compare $\frac{1}{x}$ and $\frac{1}{x+e^{x}}$.
(2 Compare $\frac{1}{e^{x}}$ and $\frac{1}{x+e^{x}}$.
Try both. What can you conclude from each one of them?

True or False

Let $a \in \mathbb{R}$.
Let f and g be continuous functions on $[a, \infty)$.
Assume that $\forall x \geq a, \quad 0 \leq f(x) \leq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=\infty, \operatorname{THEN} \int_{a}^{\infty} g(x) d x=\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=\infty$, THEN $\int_{a}^{\infty} f(x) d x=\infty$.

True or False - Part II

Let $a \in \mathbb{R}$.
Let f and g be continuous functions on $[a, \infty)$.
Assume that $\forall x \geq a, \quad f(x) \leq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=\infty, \operatorname{THEN} \int_{a}^{\infty} g(x) d x=\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=\infty$, THEN $\int_{a}^{\infty} f(x) d x=\infty$.

True or False - Part III

Let $a \in \mathbb{R}$.
Let f and g be continuous functions on $[a, \infty)$.
Assume that $\exists M \geq a$ s.t. $\forall x \geq M, \quad 0 \geq f(x) \geq g(x)$.
What can we conclude?
(1) IF $\int_{a}^{\infty} f(x) d x$ is convergent, THEN $\int_{a}^{\infty} g(x) d x$ is convergent.
(2) IF $\int_{a}^{\infty} f(x) d x=-\infty$, THEN $\int_{a}^{\infty} g(x) d x=-\infty$.
(3) IF $\int_{a}^{\infty} g(x) d x$ is convergent, THEN $\int_{a}^{\infty} f(x) d x$ is convergent.
(9) IF $\int_{a}^{\infty} g(x) d x=-\infty$, THEN $\int_{a}^{\infty} f(x) d x=-\infty$.

BCT calculations

Use the BCT to determine whether each of the following is convergent or divergent

- $\int_{1}^{\infty} \frac{1+\cos ^{2} x}{x^{2 / 3}} d x$
- $\int_{2}^{\infty} \frac{x^{2}+1}{x^{4}-2} d x$
(2 $\int_{1}^{\infty} \frac{1+\cos ^{2} x}{x^{4 / 3}} d x$
- $\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^{2}} d x$
- $\int_{0}^{\infty} e^{-x^{2}} d x$
- $\int_{0}^{\infty} \frac{\arctan x^{2}}{1+e^{x}} d x$

What can you conclude?

Let $a \in \mathbb{R}$. Let f be a continuous, positive function on $[a, \infty)$.
In each of the following cases, what can you conclude about $\int_{a}^{\infty} f(x) d x$? Is it convergent, divergent, or we do not know?
(1) $\forall b \geq a, \exists M \in \mathbb{R}$ s.t. $\int_{a}^{b} f(x) d x \leq M$.
(2) $\exists M \in \mathbb{R}$ s.t. $\forall b \geq a, \quad \int_{a}^{b} f(x) d x \leq M$.
(3) $\exists M>0$ s.t. $\forall x \geq a, f(x) \leq M$.
(9) $\exists M>0$ s.t. $\forall x \geq a, f(x) \geq M$.

