• Topic: Improper integrals, basic comparison for improper integrals

- Topic: Improper integrals, basic comparison for improper integrals
- Homework: Watch videos 12.9 and 12.10 for Wednesday.

We know from the Big Theorem that

The Big Theorem

$$ln(n) \ll n^a \ll c^n \ll n! \ll n^n$$

for every a > 0, c > 1.

There are actually lots of sequences in between each of these.

Exercise: Construct new sequences $\{u_n\}$, $\{v_n\}$, $\{w_n\}$, $\{x_n\}$, $\{y_n\}$, and $\{z_n\}$ such that, for every a > 0 and for every c > 1,

 $u_n \ll ln(n) \ll v_n \ll n^a \ll w_n \ll c^n \ll x_n \ll n! \ll y_n \ll n^n \ll z_n$

Refining the Big Theorem

• Construct a sequence $\{u_n\}_n$ such that

$$\begin{cases} \forall a < 2, & n^a \ll u_n \\ \forall a \ge 2, & u_n \ll n^a \end{cases}$$

2 Construct a sequence $\{v_n\}_n$ such that

$$\begin{cases} \forall a \leq 2, \quad n^a \ll v_n \\ \forall a > 2, \quad v_n \ll n^a \end{cases}$$

Recall the definitions

• Let f be a bounded, continuous function on $[c, \infty)$. How do we define the improper integral

$$\int_c^\infty f(x)dx?$$

Let f be a continuous function on (a, b]. How do we define the improper integral

$$\int_a^b f(x) dx ?$$

e

Calculate, using the definition of improper integral

$$\int_1^\infty \frac{1}{x^2 + x} dx$$

Is there a difference between:

 $\lim_{x\to\infty} x - \lim_{x\to\infty} x$ and $\lim_{x\to\infty} (x-x)?$

A "simple" integral

What is
$$\int_{-1}^{1} \frac{1}{x} dx$$
 ?

A "simple" integral

١

What is
$$\int_{-1}^{1} \frac{1}{x} dx$$
?
• $\int_{-1}^{1} \frac{1}{x} dx = (\ln |x|) \Big|_{-1}^{1} = \ln |1| - \ln |-1| = 0$
• $\int_{-1}^{1} \frac{1}{x} dx = 0$ because $f(x) = \frac{1}{x}$ is an odd function.
• $\int_{-1}^{1} \frac{1}{x} dx$ is divergent.

The most important improper integrals

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx$$

$$\int_{0}^{\infty} \frac{1}{x^{p}} dx$$

Computation

Does $\int_0^\infty \frac{1}{x^2 - 3x + 2}$ converge or diverge?

- Write down the definition of this improper integral.
- Compute the improper integral from the definition.

A simple BCT application

We want to determine whether \int_{1}^{1} is convergent or divergent.

$$\int_{1}^{\infty} \frac{1}{x + e^x} dx$$

We can try at least two comparisons:

• Compare
$$\frac{1}{x}$$
 and $\frac{1}{x + e^x}$.
• Compare $\frac{1}{e^x}$ and $\frac{1}{x + e^x}$.

Try both. What can you conclude from each one of them?

A simple BCT application

We want to determine whether \int_{1}^{1} is convergent or divergent.

$$\int_{1}^{\infty} \frac{1}{x + e^x} dx$$

We can try at least two comparisons:

• Compare
$$\frac{1}{x}$$
 and $\frac{1}{x + e^x}$.
• Compare $\frac{1}{e^x}$ and $\frac{1}{x + e^x}$.

Try both. What can you conclude from each one of them?

True or False

Let $a \in \mathbb{R}$. Let f and g be continuous functions on $[a, \infty)$. Assume that $|\forall x \ge a, 0 \le f(x) \le g(x)|$. What can we conclude? • IF $\int_{-\infty}^{\infty} f(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x) dx$ is convergent. **2** IF $\int_{-\infty}^{\infty} f(x) dx = \infty$, THEN $\int_{-\infty}^{\infty} g(x) dx = \infty$. • IF $\int_{-\infty}^{\infty} g(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} f(x) dx$ is convergent. • IF $\int_{-\infty}^{\infty} g(x) dx = \infty$, THEN $\int_{-\infty}^{\infty} f(x) dx = \infty$.

True or False - Part II

Let $a \in \mathbb{R}$. Let f and g be continuous functions on $[a, \infty)$. Assume that $|\forall x \ge a, \quad f(x) \le g(x)|$. What can we conclude? • IF $\int_{-\infty}^{\infty} f(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x) dx$ is convergent. **2** IF $\int_{-\infty}^{\infty} f(x) dx = \infty$, THEN $\int_{-\infty}^{\infty} g(x) dx = \infty$. • IF $\int_{-\infty}^{\infty} g(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} f(x) dx$ is convergent. • IF $\int_{-\infty}^{\infty} g(x) dx = \infty$, THEN $\int_{-\infty}^{\infty} f(x) dx = \infty$.

True or False - Part III

Let $a \in \mathbb{R}$. Let f and g be continuous functions on $[a, \infty)$. Assume that $|\exists M \ge a \text{ s.t. } \forall x \ge M, \quad 0 \ge f(x) \ge g(x)|.$ What can we conclude? • IF $\int_{-\infty}^{\infty} f(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} g(x) dx$ is convergent. **2** IF $\int_{-\infty}^{\infty} f(x) dx = -\infty$, THEN $\int_{-\infty}^{\infty} g(x) dx = -\infty$. • IF $\int_{-\infty}^{\infty} g(x) dx$ is convergent, THEN $\int_{-\infty}^{\infty} f(x) dx$ is convergent. • IF $\int_{-\infty}^{\infty} g(x) dx = -\infty$, THEN $\int_{-\infty}^{\infty} f(x) dx = -\infty$.

Use the BCT to determine whether each of the following is convergent or divergent

What can you conclude?

Let $a \in \mathbb{R}$. Let f be a continuous, positive function on $[a, \infty)$. In each of the following cases, what can you conclude about $\int_{a}^{\infty} f(x) dx$? Is it convergent, divergent, or we do not know?

ah

•
$$\forall b \ge a, \ \exists M \in \mathbb{R} \text{ s.t.} \qquad \int_{a}^{b} f(x)dx \le M.$$

• $\exists M \in \mathbb{R} \text{ s.t.} \quad \forall b \ge a, \qquad \int_{a}^{b} f(x)dx \le M.$
• $\exists M > 0 \text{ s.t.} \quad \forall x \ge a, \ f(x) \le M.$
• $\exists M > 0 \text{ s.t.} \quad \forall x > a, \ f(x) > M.$