Today's topics and news

- Topic: Big Theorem
- Homework: Watch videos 12.1-12.8 for Tuesday (12.2, 12.3, and 12.6 are supplementary) and 12.9 12.10 for Wednesday.
- Have a good reading week!

A suspicious calculation - What is wrong?

The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined by

$$
\begin{cases} & a_{0}=1 \\ \forall n \in N, & a_{n+1}=1-a_{n}\end{cases}
$$

has limit $1 / 2$.

Proof.

- Let $L=\lim _{n \rightarrow \infty} a_{n}$.
- $a_{n+1}=1-a_{n}$
- $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left[1-a_{n}\right]$
- $L=1-L$
- $L=1 / 2$.

Application of MCT

We will check the convergence of the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ defined recursively as follows:
$a_{0}=\sqrt{2}$
$a_{n+1}=\sqrt{2+a_{n}} \forall n \in \mathbb{N}$
Rough work:

1. Guess whether a_{n} is increasing or decreasing. Don't try to prove it yet.
2. If a_{n} does converge to some a, taking limits of the recursive relation, what must a be? (Keep in mind this is completely hypothetical as you have not yet proved that a_{n} converges.)
3. Guess an upper bound and a lower bound for a_{n} using 1 and 2 , which is needed for MCT to work?

Proofs:

4. Prove your guess in 1.
5. Prove your bound in 3.
6. Does a_{n} converge? If so what does it converge to?

Much less than and the Big Theorem

Much less than

Given positive sequences a_{n} and b_{n},
we say $a_{n} \ll b_{n}$ iff $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$
The Big Theorem

$$
\ln (n) \ll n^{a} \ll c^{n} \ll n!\ll n^{n}
$$

for every $a>0, c>1$.

Calculations

($\lim _{n \rightarrow \infty} \frac{n!+2 e^{n}}{3 n!+4 e^{n}}$
(2) $\lim _{n \rightarrow \infty} \frac{2^{n}+(2 n)^{2}}{2^{n+1}+n^{2}}$

- $\lim _{n \rightarrow \infty} \frac{5 n^{5}+5^{n}+5 n!}{n^{n}}$

Much less than - True or False

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be positive sequences.

- IF $a_{n} \ll b_{n}$, THEN $\forall m \in \mathbb{N}, a_{m}<b_{m}$.
- IF $a_{n} \ll b_{n}$, THEN $\exists n_{0} \in \mathbb{N}$ s.t.
$\forall m \in \mathbb{N}, m \geq n_{0} \Longrightarrow a_{m}<b_{m}$.
- IF $\forall m \in \mathbb{N}, a_{m}<b_{m}$, THEN $a_{n} \ll b_{n}$.
- IF $\exists n_{0} \in \mathbb{N}$ s.t. $\forall m \in \mathbb{N}, m \geq n_{0} \Longrightarrow a_{m}<b_{m}$, THEN $a_{n} \ll b_{n}$.

Refining the Big Theorem

We know from the Big Theorem that

The Big Theorem

$$
\ln (n) \ll n^{a} \ll c^{n} \ll n!\ll n^{n}
$$

for every $a>0, c>1$.
There are actually lots of sequences in between each of these.
Exercise: Construct new sequencse $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{w_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ such that, for every $a>0$ and for every $c>1$,

$$
u_{n} \ll \ln (n) \ll v_{n} \ll n^{a} \ll w_{n} \ll c^{n} \ll x_{n} \ll n!\ll y_{n} \ll n^{n} \ll z_{n}
$$

Refining the Big Theorem

(Construct a sequence $\left\{u_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a<2, & n^{a} \ll u_{n} \\ \forall a \geq 2, & u_{n} \ll n^{a}\end{cases}
$$

(2) Construct a sequence $\left\{v_{n}\right\}_{n}$ such that

$$
\begin{cases}\forall a \leq 2, & n^{a} \ll v_{n} \\ \forall a>2, & v_{n} \ll n^{a}\end{cases}
$$

