MAT 137
 Tutorial \#16- Infinite series

July 31/August 1, 2019

1. Geometric series. You have learned that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \text { if }|x|<1
$$

and the series is divergent if $|x| \geq 1$. Calculate the following infinite sums:
(a) $\sum_{n=0}^{\infty}(\ln 2)^{n}$
(b) $\sum_{n=0}^{\infty}(\ln 3)^{n}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{2 n+3}}$
(d) $\sum_{n=m}^{\infty} x^{n}$
(e) $\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{4}}+\frac{1}{5^{5}}+\frac{1}{5^{7}}+\frac{1}{5^{8}}+\frac{1}{5^{10}}+\frac{1}{5^{11}}+\ldots$
(f) $\frac{1}{2^{0.5}}+\frac{1}{2}+\frac{1}{2^{1.5}}-\frac{1}{2^{2}}+\frac{1}{2^{2.5}}+\frac{1}{2^{3}}+\frac{1}{2^{3.5}}-\frac{1}{2^{4}}+\frac{1}{2^{4.5}}+\frac{1}{2^{5}}+\frac{1}{2^{5.5}}-\frac{1}{2^{6}}+\ldots$
2. Telescopic series. Calculate the value of the following infinite sums. In all cases, you can start by finding a formula for the N-th partial sum, and then taking the limit.
(a) $\sum_{n=0}^{\infty}[\arctan n-\arctan (n+1)]$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n}$
(b) $\sum_{n=1}^{\infty}\left[\ln \frac{n}{n+1}\right]$
(d) $\sum_{n=3}^{\infty} \frac{n+2}{n^{3}-n}$

Hint: For Question 2c, write $\frac{1}{n^{2}+3 n}=\frac{A}{n}+\frac{B}{n+3}$. Something similar helps for 2d.
3. Infinite decimal expansions. We can interpret any finite decimal expansion as a finite sum. For example:

$$
2.13096=2+\frac{1}{10}+\frac{3}{10^{2}}+\frac{0}{10^{3}}+\frac{9}{10^{4}}+\frac{6}{10^{5}}
$$

Similarly, we can interpret any infinite decimal expansion as an infinite series. Interpret the following numbers as series, and add up the series to calculate their value as fractions:
(a) $0.99999 \ldots$
(b) $0.11111 \ldots$
(c) $0.252525 \ldots$
(d) $0.3121212 \ldots$

