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Motivation for today’s lecture
I Today, I’ll give a conceptual overview of the course:

I Linear algebra is about solving systems of linear equations:

I Fix aij ∈ R for i = 1, ...,m and j = 1, ..., n
Question: For each b = (b1, ..., bm), does there exist
x = (x1, ..., xn) such that

ai1x1 + ...+ ainxn = bi for each i = 1, ...,m?

I If no, then for which b does there exist such an x?

I If yes, how many ‘different’ x are there for fixed b?

I We have learned algorithms to answer these questions.

I We also learned some geometric intuition for how these work,
in terms of vectors in Rn and linear transformations Rn to Rm.

I We’ve also developed some language to formalize this
geometric intution into precise reasoning, which allows us to
answer these questions without doing as much computation.

I This is done more in 224, with ‘general’ vector spaces V .
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Discussion: Coordinates with respect to a basis
Let V be a vector space and β = {v1, ..., vn} be a basis for V .

Recall that we proved:
Proposition: For every vector v ∈ V , there exists a unique

x1, ..., xn ∈ R such that v = x1v1 + ...+ xnvn
Notation: We call (x1, ..., xn) the coordinate vector of v with
respect to α, and write [v]α = [xi ] as a column vector.

Discussion: Let V = R2 and α = {(1,−1), (1, 1)}. Determine

(1) [e1]α
(2) [e2]α
(3) [e1 + e2]α
where e1 = (1, 0), e2 = (0, 1) are the standard basis vectors.

Let V = P2(R) and α = {1, 1 + x , 1 + x + x2}. Determine

(a) [1]α
(b) [x ]α
(c) [x2]α
(d) [a + bx + cx2]α where a, b, c are arbitrary scalars.
(e) Show that [a + bx + cx2]α = a[1]α + b[x ]α + c[x2]α.
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Discussion: Linear Transformations
Throughout, let S , S ′ be sets and V ,W be vector spaces.

Definition: A function f : S → S ′ is a rule that assigns to each
s ∈ S and element f (s) ∈ S ′; we write s 7→ f (s).

The set S is called the domain of f , and the set S ′ the target of f .

Definition: A function T : V →W is called linear if

T (x + y) = T (x) + T (y) and T (cx) = cT (x)

for each x, y ∈ V , c ∈ R. Equivalently, T (cx + y) = cT (x) + T (y).

Example: T : R→ R defined by T (x) = xn is linear iff n = 1.

Discussion: Which of the following are linear? (with proof)

(1) T : Rn → Rm defined by T (x) = Ax for A ∈ Mm×n(R).
(2) T : Pn(R)→ Pn(R) defined by T (p) = d

dx p.
(3) T : Mm×n(R)→ Mm×r (R) by T (A) = AB for B ∈ Mn×r (R).

(4) Let S = {v1, ..., vn} be a basis for V . Show the following:
For each y1, ..., yn ∈W there exists a unique linear T : V →W
such that T (vj) = yj for each j = 1, ..., n.
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Matrices and Linear Transformations
Let V ,W be vector spaces and α = {v1, ..., vn}, β = {w1, ...,wm}
be bases for them. Thus, dimV = n, dimW = m.

Let T : V →W be a linear transformation. We just proved that T
is determined uniquely by the vectors T (vj) ∈W for j = 1, ..., n.

For each j , the vector T (vj) ∈W has a unique decomposition

T (vj) = a1jw1 + ...+ amjwm for some aij ∈ R for i = 1, ...,m.

As a column vector, we have [T (vj)]β =

a1j...
amj

 ∈ Rm

In summary, given α, β we can record the information of T by:

[T ]βα =
[
T (v1)| · · · |T (vn)

]β
=

a11 · · · a1n
... aij

...
am1 · · · amn

 ∈ Mm×n(R)

The j th column of [T ]βα describes T (vj), the image under T of the
j th vector vj in the basis α, in terms of coordinates defined by β.
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Discussion: Matrices and Linear Transformations
Let V = R2, W = R3, α = {e1, e2}, β = {f1, f2, f3} the standard
bases, and α′ = {e1, e1 + e2}, β′ = {f1 + f2, f1 − f2, f2 + f3}.
Define a linear map T : V →W by

T (e1) = f1 + f2 T (e2) = f2 + f3 and calculate

(1) the matrix [T ]βα

(2) the matrix [T ]βα′

(3) the matrix [T ]β
′

α

Let V = P2(R), and α = {1, x , x2}, β = {1 + x , 1− x , x2}.
Define T : V → V by T (p) = d

dx p and calculate

(4) the matrix [T ]αα
(5) the matrix [T ]βα
(6) the matrix [T ]αβ

Bonus: Let V ,W vector spaces, α, β bases, and T : V →W .
Prove that [T (x)]β = [T ]βα · [x]α for each x ∈ V .
This is just showing that ‘matrix multiplication works’.
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Discussion: Injective and Surjective Functions
Let S , S̃ be sets, R ⊂ S , R̃ ⊂ S̃ be subsets and f : S → S̃ .

Definition:
I The image of R under f is f (R) = {f (s)|s ∈ R} ⊂ S̃ .
I The preimage of R̃ under f , f −1(R̃) = {s ∈ S |f (s) ∈ R̃} ⊂ S

Warning: The preimage is always defined even if f is not invertible.

Definition: f is injective if knowing f (s) = f (t) implies s = t.

f is surjective if for each s̃ ∈ S̃ there exists s ∈ S with f (s) = s̃.

f is bijective if it is injective and surjective.

Discussion: Prove the following:

(1) f is surjective if and only if f (S) = S̃ , if and only if:
For each s̃ ∈ S̃ , f −1({s̃}) is non-empty, i.e. f −1({s̃}) 6= Ø.

(2) f is injective if and only if:
For each s̃ ∈ S̃ , f −1({s̃}) is either a single point {s} or empty Ø.

(3) f is bijective if and only if:
For each s̃ ∈ S̃ , there exists a unique s ∈ S such that f (s) = s̃.
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Kernel and Image

Let V ,W be vector spaces and T : V →W a linear map.

Definition: The kernel of T is the subset of V defined by

ker(T ) = T−1({0}) = {v ∈ V |T (v) = 0}
Example: Define T : R3 → R2 by T (x1, x2, x3) = (x1, x2 − x3).

ker(T ) = {(x1, x2, x3) ∈ R3|x1 = 0, x2 = x3}

Definition: The image of T is the subset of W defined by

im(T ) = T (V ) = {T (v) ∈W |v ∈ V }
Example: Define T : R2 → R3 by T (x1, x2) = (x1, x2, x1 − x2).

im(T ) = {(x1, x2, x3) ∈ R3|x3 = x1 − x2}
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Discussion: Kernel and Image

Let V ,W be vector spaces with bases α = {v1, ..., vn} and
β = {w1, ...,wm}, and T : V →W a linear map.

Prove the following:

(1) ker(T ) is a subspace of V .

(2) im(T ) is a subspace of W .

(3) im(T ) = Span({T (v1), ...,T (vn)})
(4) ker(T ) = null([T ]βα) (use that ‘matrix multiplication works’)

(5) im(T ) = col([T ]βα) (use that ‘matrix multiplication works’)

(6) T is injective if and only if ker(T ) = {0}

Bonus: Let b ∈ im(T ) so that b = T (x0) for x0 ∈ V . Then show

T−1({b}) := {x ∈ V |T (x) = b} = {x0 + v|v ∈ ker(T )}

Conclude that there is a bijection between T−1({b}) and ker(T ).
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What does it mean to solve linear equations?
Fix aij ∈ R for i = 1, ...,m and j = 1, ..., n.

Question: For each b = (b1, ..., bm), does there exist
x = (x1, ..., xn) such that

ai1x1 + ...+ ainxn = bi for each i = 1, ...,m?

I If no, then for which b does there exist such an x?
I If yes, how many ‘different’ x are there for fixed b?

Answer: Let A = [aij ] ∈ Mm×n(R), which defines T : Rn → Rm.
Then

ai1x1 + ...+ ainxn = bi for each i = 1, ...,m

if and only if
Ax = b, or equivalently T (x) = b.

Thus, we have the following answer:

I There exists x solving the equation if and only if b ∈ im(T ).
I For each fixed b, the set of solutions is T−1({b}), which we

showed is in bijection with ker(T ).
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Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map T : V →W .

What can we say about im(T ) and ker(T ) in general? Let’s look
at some examples:

(1) T : R2 → R3 (x1, x2) 7→ (x1, x2, 0)
I dim ker(T ) = 0 , dim im(T ) = 2 .

(2) T : R2 → R3 (x1, x2) 7→ (x1, 0, 0)
I dim ker(T ) = 1 , dim im(T ) = 1.

(3) T : R2 → R3 (x1, x2) 7→ (0, 0, 0)
I dim ker(T ) = 2 , dim im(T ) = 0.

(4) T : Rn → Rm (x1, ..., xn) 7→ (x1, ..., xn−k , 0, ..., 0)
I dim ker(T ) = k , dim im(T ) = n − k .

Claim: Every linear T : V →W looks like this wrt some bases.

Corollary: Let T : V →W linear, with dimV = n. Then
dimV = n = k + (n − k) = dim ker(T ) + dim im(T )
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Injectivity and surjectivity revisited
Let V ,W be vector spaces and α = {v1, ..., vn}, β = {w1, ...,wm}
be bases, and fix any of the following equivalent pieces of data:

(1) T : V →W
(2) {T (v1), ...,T (vn) } a list of vectors in W

(3) [T ]βα a matrix of numbers aij ∈ R
(4) a system of equations ai1x1 + ...+ ainxn =? for i = 1, ...,m

T is surjective if for any b ∈W , there is x ∈ V with T (x) = b.

In each of the above pictures, we have an equivalent condition:

(1) im(T ) = W
(2) Span({T (vi )} = W

(3) col([T ]βα) = W
(4) for any b ∈W , there exists x solving ai1x1 + ...+ ainxn = bi

Similarly: T is injective if T (x) = T (y) imples x = y. Equivalently,

(1) ker(T ) = {0}
(2) {T (vi )} is linearly independent.

(3) null([T ]βα) = {0}
(4) For b ∈ im(T ), solution to ai1x1 + ...+ ainxn = bi is unique 12 / 16



Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map T : V →W .

What can we say about im(T ) and ker(T ) in general? Let’s look
at some examples:

(1) T : R2 → R3 (x1, x2) 7→ (x1, x2, 0)
I dim ker(T ) = 0 , dim im(T ) = 2 .

(2) T : R2 → R3 (x1, x2) 7→ (x1, 0, 0)
I dim ker(T ) = 1 , dim im(T ) = 1.

(3) T : R2 → R3 (x1, x2) 7→ (0, 0, 0)
I dim ker(T ) = 2 , dim im(T ) = 0.

(4) T : Rn → Rm (x1, ..., xn) 7→ (x1, ..., xn−k , 0, ..., 0)
I dim ker(T ) = k , dim im(T ) = n − k .

Claim: Every linear T : V →W ‘looks like this’ wrt some bases.

Corollary: Let T : V →W linear, with dimV = n. Then
dimV = n = k + (n − k) = dim ker(T ) + dim im(T )
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Discussion: The Dimension Theorem
Theorem: (The Dimension Theorem) Let T : V →W be a linear
map, with V finite dimensional. Then

dimV = dim ker(T ) + dim im(T )

Let’s prove the dimension theorem using the following steps:

To fix notation, let’s say dimV = n.

(1) Since ker(T ) ⊂ V , we know k := dim ker(T ) ≤ dimV = n.

(2) Choose a basis {v1, ..., vk} for ker(T ), and extend to a basis
{v1, ..., vn} for V .

(3) Show that {T (vk+1), ...,T (vn)} define a basis for im(T ).
(If it were linearly dependent, find a ‘new’ element of ker(T ))

(4) Conclude that dim im(T ) = n − k .

(5) Use that n = k + (n − k) to prove the theorem.

Suppose dimW = m is finite, and extend {T (vk+1), ...,T (vn)} to
a basis for W .

What is [T ] with respect to these bases?
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Discussion: Applications of the dimension theorem
Let T : V →W and V and W finite dimensional. Recall:

T is injective if and only if ker(T ) = {0}
T is surjective if and only if im(T ) = W .

Theorem: dimV = dim ker(T ) + dim im(T )

(a) If dim(kerT ) = 0 can you determine if T is injective? What
about surjective? (doesn’t require the theorem)

(b) If dim(imT ) = dimW can you determine if T is injective?
What about surjective? (doesn’t require the theorem)

(c) If dim(imT ) = dimV can you determine if T is injective?
What about surjective?

(d) If dimV = dimW and T is injective, can you determine if T
is surjective? What about vice versa?

(e) If dimV < dimW , can T be injective? Can it be surjective?

(f) If dimV > dimW , can T be injective? Can it be surjective?
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Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:

(1) T : V →W

(2) {T (v1), ...,T (vn) } a list of vectors in W

(3) [T ]βα a matrix of numbers aij ∈ R
(4) a system of equations ai1x1 + ...+ ainxn =? for i = 1, ...,m

and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let W = {x ∈ Rn|a1x1 + ...+ anxn = 0}. Show
dimW = n − 1 unless the ai are all zero.

(2) Let V be n dimensional and S = {v1, ..., vn} ⊂ V . Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let T : Rn → Rn a linear map with [T ] ∈ Mn×n(R). Show
that if [T ] has linearly dependent columns, then T is not surjective.
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