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Motivation for today's lecture

>
>
>

vvyyvyy

v

Today, I'll give a conceptual overview of the course:
Linear algebra is about solving systems of linear equations:
FixajeRfori=1,...,mandj=1,..,n
Question: For each b = (b4, ..., by,), does there exist
X = (X1, ..., Xn) such that
aj1x1 + ... + ainxn = b; foreachi=1,....m?
If no, then for which b does there exist such an x?
If yes, how many ‘different’ x are there for fixed b?
We have learned algorithms to answer these questions.

We also learned some geometric intuition for how these work,
in terms of vectors in R” and linear transformations R” to R™.

We've also developed some language to formalize this
geometric intution into precise reasoning, which allows us to
answer these questions without doing as much computation.
This is done more in 224, with ‘general’ vector spaces V.
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Discussion: Coordinates with respect to a basis
Let V be a vector space and 3 = {vi,...,v,} be a basis for V.
Recall that we proved:

Proposition: For every vector v € V, there exists a unique
X1,...,Xp € R such that v =x3vi +... + xpv,
Notation: We call (xi, ..., xn) the coordinate vector of v with

respect to «, and write [v]* = [x;] as a column vector.
Discussion: Let V = R? and a = {(1,-1),(1,1)}. Determine
(1) [e1]a

(2) [eo]a

(3) [e1+ e2]a

where e; = (1,0),e2 = (0, 1) are the standard basis vectors.
Let V = P»(R) and @ = {1,1 + x,1 + x + x2}. Determine

(@) []a

(b) X]a

(©) [l

(d) [a+ bx + cx?] Where a, b, ¢ are arbitrary scalars.
(e) Show that [a+ bx + cx?]o = a[1]a + b[X]a + c[x*]a-
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Discussion: Linear Transformations
Throughout, let S, S’ be sets and V, W be vector spaces.

Definition: A function f : S — S’ is a rule that assigns to each
s € S and element f(s) € S’; we write s — f(s).

The set S is called the domain of f, and the set S’ the target of f.

Definition: A function T : V — W is called linear if
T(x+y)=T(x)+ T(y) and T(cx)=cT(x)

for each x,y € V,c € R. Equivalently, T(cx+y) = cT(x) + T(y).

Example: T : R — R defined by T(x) = x" is linear iff n = 1.

Discussion: Which of the following are linear? (with proof)

(1) T:R" — R™ defined by T(x) = Ax for A € Mpyxn(R).

(2) T : Py(R) — Py(R) defined by T(p) = Lp.

(3) T : Mmxn(R) = My (R) by T(A) = AB for B € Moy, (R).

(4) Let S = {v1,...,v,} be a basis for V. Show the following:
For each y1,...,yn € W there exists a unique linear T : V — W
such that T(vj) =y; foreach j=1,....n.
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Matrices and Linear Transformations

Let V, W be vector spaces and o = {v1,...,vp}, 5 = {w1, ..., wp}
be bases for them. Thus, dimV = n, dim W = m.

Let T : V — W be a linear transformation. We just proved that T
is determined uniquely by the vectors T(v;) € W for j =1,...,n.

For each j, the vector T(v;) € W has a unique decomposition

T(vj) = a;jwi + ... + amjwm,  for some ajj € R for i =1,..., m.
aij

As a column vector, we have [T(vj)]ﬂ =1 : € R™

amj
In summary, given «, 5 we can record the information of T by:

11 - an
(TR =Tl (T =| ¢ a5 | €Mman(R)

ami amn

The j* column of [T]g describes T(v;), the image under T of the

Jjt vector v; in the basis «, in terms of coordinates defined by (. 16



Discussion: Matrices and Linear Transformations
Let V = Rz, W = R3, o= {61,62}, 8= {fl,fg,f3} the standard
bases, and o/ = {el,el + 62},,8/ = {fl +fo,f1 — o, fo + f3}.
Define a linear map 7 : V — W by
T(er)=fi+f, T(ex) =f,+f3 and calculate
(1) the matrix [T]2
(2) the matrix [T]g/
(3) the matrix [T]g/

Let V = P5(R), and o = {1,x,x?}, 8= {1+ x,1 — x,x%}.
Define T: V — V by T(p) = d%p and calculate

(4) the matrix [T]%

(5) the matrix [T]g

(6) the matrix [T]3

Bonus: Let V, W vector spaces, o, 3 bases, and T : V — W.
Prove that  [T(x)]? = [T]g - [x]*  for each x € V.
This is just showing that ‘matrix multiplication works'.
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Discussion: Injective and Surjective Functions
Let S, S be sets, RC S,R C S be subsets and f : S — §.
Definition:
> The image of R under f is f(R) = {f(s)|s € R} C S. )
» The preimage of R under f, f"1(R) = {s€ S|f(s)e R} C S

Warning: The preimage is always defined even if f is not invertible.

Definition: f is injective if knowing f(s) = f(t) implies s = t.
f is surjective if for each § € S there exists s € S with f(s) = 5.
f is bijective if it is injective and surjective.

Discussion: Prove the following:
(1) f is surjective if and only if f(S) = S, if and only if:
For each 5 € S, f~1({5}) is non-empty, i.e. f~1({5}) # @.
(2) f is injective if and only if:
For each § € 5, f~1({3}) is either a single point {s} or empty @.
(3) f is bijective if and only if:
For each § € S, there exists a unique s € S such that f(s) = 5.
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Kernel and Image

Let V, W be vector spaces and T : V — W a linear map.

Definition: The kernel of T is the subset of V defined by
ker(T) = T71({0}) = {v € V|T(v) = 0}
Example: Define T : R3 — R? by T(x1,x2,x3) = (x1, % — x3).
ker(T) = {(x1,%,x3) € R3|x1 =0, xo0 = x3}

Definition: The image of T is the subset of W defined by
im(T)=T(V)={T(v) e W|ve V}
Example: Define T : R? — R3 by T(x1,x) = (x1, X2, X1 — X2).
im(T) = {(x1,%,x3) € R3|x3 = x1 — x2}
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Discussion: Kernel and Image

Let V, W be vector spaces with bases a = {vq,...,v,} and
B =A{wi,...,wp} and T :V — W a linear map.

Prove the following:

(1) ker(T) is a subspace of V.

(2) im(T) is a subspace of W.

(3) im(T) = Span({T(v1), ., T(vn)})

(4) ker(T) = nuII([T]g) (use that ‘matrix multiplication works’)
(5) im(T) = coI([T]ﬁ) (use that ‘matrix multiplication works')
(6) T is injective if and only if ker(T) = {0}

Bonus: Let b € im(T) so that b = T(xq) for xo € V. Then show
“1({b}) ;= {x € V|T(x) = b} = {xo + v|v € ker(T)}

Conclude that there is a bijection between T=1({b}) and ker(T).
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What does it mean to solve linear equations?
FixajeRfori=1,..,mandj=1,.. n
Question: For each b = (b, ..., by,), does there exist
x = (x1, ..., Xn) such that
ai1X1 + ... + @inxnp = b; foreachi=1,...,m?
» |f no, then for which b does there exist such an x?
» If yes, how many ‘different’ x are there for fixed b?

Answer: Let A = [ajj] € Miyxn(R), which defines T : R” — R™.
Then
aj1x1 + ... + ajpxn = b; foreachi=1,....m
if and only if
Ax = b, or equivalently T(x) = b.

Thus, we have the following answer:

» There exists x solving the equation if and only if b € im(T).

> For each fixed b, the set of solutions is T~%({b}), which we

showed is in bijection with ker(T).
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Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map 7 : V — W.
What can we say about im(T) and ker(T) in general? Let's look
at some examples:
(1) T:R2 = R3 (x1,x)+ (x1,x,0)
» dimker(T) =0, dimim(T)=2.
(2) T:R?2—=R3 (x,x)+ (x1,0,0)
» dimker(T) =1, dimim(T) = 1.
(3) T:R?2—=R3 (x,x)+ (0,0,0)
» dimker(T) =2, dimim(T) =0.
(4) T:R" > R™ (x1,...,%n) = (X1, Xn—k, 0, ..., 0)
» dimker(T) =k, dimim(T) =n— k.
Claim: Every linear T : V — W looks like this wrt some bases.
Corollary: Let T : V — W linear, with dim V = n. Then
dimV =n=k+ (n—k)=dimker(T) 4 dimim(T)
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Injectivity and surjectivity revisited
Let V, W be vector spaces and o = {v1,...,vp}, 5 = {w1, ..., wp}
be bases, and fix any of the following equivalent pieces of data:
1) T:VoWwW
(2) {T(v1),..., T(vp) } a list of vectors in W
(3) [T]2 a matrix of numbers ajeR
(4) a system of equations aj1x1 + ... + ajpx, =? fori=1,...m
T is surjective if for any b € W, there is x € V with T(x) = b.
In each of the above pictures, we have an equivalent condition:
(1) im(T)=W
(2) Span({T(vi)} =W
(3) col([T]2) = W
(4) for any b € W, there exists x solving aj1x1 + ... + ajnxn = b;
Similarly: T is injective if T(x) = T(y) imples x = y. Equivalently,
(1) ker(T) ={0}
(2) {T(v;)} is linearly independent.
(3) null([T]2) = {0}
(4)

4) For b € im(T), solution to aj1x1 + ... + ajnxy, = b; is unique



Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map 7 : V — W.
What can we say about im(T) and ker(T) in general? Let's look
at some examples:
(1) T:R2 = R3 (x1,x)+ (x1,x,0)
» dimker(T) =0, dimim(T)=2.
(2) T:R?2—=R3 (x,x)+ (x1,0,0)
» dimker(T) =1, dimim(T) = 1.
(3) T:R?2—=R3 (x,x)+ (0,0,0)
» dimker(T) =2, dimim(T) =0.
(4) T:R" > R™ (x1,...,%n) = (X1, Xn—k, 0, ..., 0)
» dimker(T) =k, dimim(T) =n— k.
Claim: Every linear T : V — W ‘looks like this' wrt some bases.
Corollary: Let T : V — W linear, with dim V = n. Then
dimV =n=k+ (n—k)=dimker(T) 4 dimim(T)
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Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let T : V — W be a linear

map, with V finite dimensional. Then
dimV =dimker(T) + dimim(T)

Let's prove the dimension theorem using the following steps:
To fix notation, let’s say dim V = n.
(1) Since ker(T) C V, we know k :=dimker(T) < dimV = n.
(2) Choose a basis {vi,...,vk} for ker(T), and extend to a basis
{v1,...,vp} for V.
(3) Show that { T(vk+1),..., T(vn)} define a basis for im(T).
(If it were linearly dependent, find a ‘new’ element of ker(T))
(4) Conclude that dimim(T) = n— k.
(5) Use that n = k + (n — k) to prove the theorem.
Suppose dim W = m is finite, and extend {T(vk41), ..., T(vn)} to
a basis for W.
What is [ T] with respect to these bases?
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Discussion: Applications of the dimension theorem
Let T:V — W and V and W finite dimensional. Recall:
T is injective if and only if ker(T) = {0}
T is surjective if and only if im(T) = W.
Theorem: dim V =dimker(T) + dimim(T)

(a) If dim(ker T) = 0 can you determine if T is injective? What
about surjective? (doesn’t require the theorem)

(b) If dim(im T) = dim W can you determine if T is injective?
What about surjective? (doesn't require the theorem)

(c) If dim(imT) = dim V can you determine if T is injective?
What about surjective?

(d) If dim V = dim W and T is injective, can you determine if T
is surjective? What about vice versa?

(e) If dimV < dim W, can T be injective? Can it be surjective?
(f) If dimV > dim W, can T be injective? Can it be surjective?
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Discussion: Further applications, putting it all together!
Recall we had 4 different pictures of a linear map:
(1) T:V-oW
(2) {T(v1),..., T(vp) } a list of vectors in W
(3) [T]5 a matrix of numbers ajeR
(4) a system of equations aj1x1 + ... + ajpxy =? fori=1,...m
and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let W = {x € R"|a1x1 + ... + anx, = 0}. Show

dim W = n — 1 unless the a; are all zero.

(2) Let V be n dimensional and S = {v1,...,v,} C V. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let T :R" — R" a linear map with [T] € Mpxn(R). Show

that if [T] has linearly dependent columns, then T is not surjective.
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