MAT223 - Final Lecture
 A conceptual overview of the course

Dylan Butson

University of Toronto

December 8, 2020

Motivation for today's lecture

- Today, l'll give a conceptual overview of the course:
- Linear algebra is about solving systems of linear equations:
- Fix $a_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$

Question: For each $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$, does there exist $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i} \quad \text { for each } i=1, \ldots, m ?
$$

- If no, then for which \mathbf{b} does there exist such an \mathbf{x} ?
- If yes, how many 'different' \mathbf{x} are there for fixed \mathbf{b} ?
- We have learned algorithms to answer these questions.
- We also learned some geometric intuition for how these work, in terms of vectors in \mathbb{R}^{n} and linear transformations \mathbb{R}^{n} to \mathbb{R}^{m}.
- We've also developed some language to formalize this geometric intution into precise reasoning, which allows us to answer these questions without doing as much computation.
- This is done more in 224, with 'general' vector spaces V.

Discussion: Coordinates with respect to a basis

Let V be a vector space and $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V.
Recall that we proved:
Proposition: For every vector $\mathbf{v} \in V$, there exists a unique

$$
x_{1}, \ldots, x_{n} \in \mathbb{R} \quad \text { such that } \quad \mathbf{v}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n}
$$

Notation: We call $\left(x_{1}, \ldots, x_{n}\right)$ the coordinate vector of \mathbf{v} with respect to α, and write $[\mathbf{v}]^{\alpha}=\left[x_{i}\right]$ as a column vector. Discussion: Let $V=\mathbb{R}^{2}$ and $\alpha=\{(1,-1),(1,1)\}$. Determine
(1) $\left[\mathbf{e}_{1}\right]_{\alpha}$
(2) $\left[\mathbf{e}_{2}\right]_{\alpha}$
(3) $\left[\mathbf{e}_{1}+\mathbf{e}_{2}\right]_{\alpha}$
where $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$ are the standard basis vectors.
Let $V=P_{2}(\mathbb{R})$ and $\alpha=\left\{1,1+x, 1+x+x^{2}\right\}$. Determine
(a) $[1]_{\alpha}$
(b) $[x]_{\alpha}$
(c) $\left[x^{2}\right]_{\alpha}$
(d) $\left[a+b x+c x^{2}\right]_{\alpha}$ where a, b, c are arbitrary scalars.
(e) Show that $\left[a+b x+c x^{2}\right]_{\alpha}=a[1]_{\alpha}+b[x]_{\alpha}+c\left[x^{2}\right]_{\alpha}$.

Discussion: Linear Transformations

Throughout, let S, S^{\prime} be sets and V, W be vector spaces.
Definition: A function $f: S \rightarrow S^{\prime}$ is a rule that assigns to each $s \in S$ and element $f(s) \in S^{\prime}$; we write $s \mapsto f(s)$.
The set S is called the domain of f, and the set S^{\prime} the target of f.
Definition: A function $T: V \rightarrow W$ is called linear if

$$
T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y}) \quad \text { and } \quad T(c \mathbf{x})=c T(\mathbf{x})
$$

for each $\mathbf{x}, \mathbf{y} \in V, c \in \mathbb{R}$. Equivalently, $T(c \mathbf{x}+\mathbf{y})=c T(\mathbf{x})+T(\mathbf{y})$.
Example: $T: \mathbb{R} \rightarrow \mathbb{R}$ defined by $T(x)=x^{n}$ is linear iff $n=1$.
Discussion: Which of the following are linear? (with proof)
(1) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\mathbf{x})=A \mathbf{x}$ for $A \in M_{m \times n}(\mathbb{R})$.
(2) $T: P_{n}(\mathbb{R}) \rightarrow P_{n}(\mathbb{R})$ defined by $T(p)=\frac{d}{d x} p$.
(3) $T: M_{m \times n}(\mathbb{R}) \rightarrow M_{m \times r}(\mathbb{R})$ by $T(A)=A B$ for $B \in M_{n \times r}(\mathbb{R})$.
(4) Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Show the following:

For each $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in W$ there exists a unique linear $T: V \rightarrow W$ such that $T\left(\mathbf{v}_{j}\right)=\mathbf{y}_{j}$ for each $j=1, \ldots, n$.

Matrices and Linear Transformations

Let V, W be vector spaces and $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be bases for them. Thus, $\operatorname{dim} V=n, \operatorname{dim} W=m$.
Let $T: V \rightarrow W$ be a linear transformation. We just proved that T is determined uniquely by the vectors $T\left(\mathbf{v}_{j}\right) \in W$ for $j=1, \ldots, n$.
For each j, the vector $T\left(\mathbf{v}_{j}\right) \in W$ has a unique decomposition $T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m} \quad$ for some $a_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$.

As a column vector, we have

$$
\left[T\left(\mathbf{v}_{j}\right)\right]^{\beta}=\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right] \in \mathbb{R}^{m}
$$

In summary, given α, β we can record the information of T by:
$[T]_{\alpha}^{\beta}=\left[\begin{array}{lll}T\left(\mathbf{v}_{1}\right) \mid & \cdots & \mid T\left(\mathbf{v}_{n}\right)\end{array}\right]^{\beta}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & a_{i j} & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right] \in M_{m \times n}(\mathbb{R})$
The $j^{\text {th }}$ column of $[T]_{\alpha}^{\beta}$ describes $T\left(\mathbf{v}_{j}\right)$, the image under T of the $j^{t h}$ vector \mathbf{v}_{j} in the basis α, in terms of coordinates defined by β.

Discussion: Matrices and Linear Transformations

Let $V=\mathbb{R}^{2}, W=\mathbb{R}^{3}, \alpha=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}, \beta=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ the standard bases, and $\alpha^{\prime}=\left\{\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}\right\}, \beta^{\prime}=\left\{\mathbf{f}_{1}+\mathbf{f}_{2}, \mathbf{f}_{1}-\mathbf{f}_{2}, \mathbf{f}_{2}+\mathbf{f}_{3}\right\}$.
Define a linear map $T: V \rightarrow W$ by

$$
T\left(\mathbf{e}_{1}\right)=\mathbf{f}_{1}+\mathbf{f}_{2} \quad T\left(\mathbf{e}_{2}\right)=\mathbf{f}_{2}+\mathbf{f}_{3} \quad \text { and calculate }
$$

(1) the matrix $[T]_{\alpha}^{\beta}$
(2) the matrix $[T]_{\alpha^{\prime}}^{\beta}$
(3) the matrix $[T]_{\alpha}^{\beta^{\prime}}$

Let $V=P_{2}(\mathbb{R})$, and $\alpha=\left\{1, x, x^{2}\right\}, \beta=\left\{1+x, 1-x, x^{2}\right\}$.
Define $T: V \rightarrow V$ by $T(p)=\frac{d}{d x} p$ and calculate
(4) the matrix $[T]_{\alpha}^{\alpha}$
(5) the matrix $[T]_{\alpha}^{\beta}$
(6) the matrix $[T]_{\beta}^{\alpha}$

Bonus: Let V, W vector spaces, α, β bases, and $T: V \rightarrow W$. Prove that $[T(\mathbf{x})]^{\beta}=[T]_{\alpha}^{\beta} \cdot[\mathbf{x}]^{\alpha} \quad$ for each $\mathbf{x} \in V$. This is just showing that 'matrix multiplication works'.

Discussion: Injective and Surjective Functions

Let S, \tilde{S} be sets, $R \subset S, \tilde{R} \subset \tilde{S}$ be subsets and $f: S \rightarrow \tilde{S}$.

Definition:

- The image of R under f is $f(R)=\{f(s) \mid s \in R\} \subset \tilde{S}$.
- The preimage of \tilde{R} under $f, f^{-1}(\tilde{R})=\{s \in S \mid f(s) \in \tilde{R}\} \subset S$

Warning: The preimage is always defined even if f is not invertible.
Definition: f is injective if knowing $f(s)=f(t)$ implies $s=t$.
f is surjective if for each $\tilde{s} \in \tilde{S}$ there exists $s \in S$ with $f(s)=\tilde{s}$.
f is bijective if it is injective and surjective.
Discussion: Prove the following:
(1) f is surjective if and only if $f(S)=\tilde{S}$, if and only if:

For each $\tilde{s} \in \tilde{S}, f^{-1}(\{\tilde{s}\})$ is non-empty, i.e. $f^{-1}(\{\tilde{s}\}) \neq \varnothing$.
(2) f is injective if and only if:

For each $\tilde{s} \in \tilde{S}, f^{-1}(\{\tilde{s}\})$ is either a single point $\{s\}$ or empty \emptyset.
(3) f is bijective if and only if:

For each $\tilde{s} \in \tilde{S}$, there exists a unique $s \in S$ such that $f(s)=\tilde{s}$.

Kernel and Image

Let V, W be vector spaces and $T: V \rightarrow W$ a linear map.
Definition: The kernel of T is the subset of V defined by

$$
\operatorname{ker}(T)=T^{-1}(\{\mathbf{0}\})=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\}
$$

Example: Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}-x_{3}\right)$.

$$
\operatorname{ker}(T)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0, x_{2}=x_{3}\right\}
$$

Definition: The image of T is the subset of W defined by

$$
\operatorname{im}(T)=T(V)=\{T(\mathbf{v}) \in W \mid \mathbf{v} \in V\}
$$

Example: Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}-x_{2}\right)$.

$$
\operatorname{im}(T)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=x_{1}-x_{2}\right\}
$$

Discussion: Kernel and Image

Let V, W be vector spaces with bases $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $\beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$, and $T: V \rightarrow W$ a linear map.
Prove the following:
(1) $\operatorname{ker}(T)$ is a subspace of V.
(2) $\operatorname{im}(T)$ is a subspace of W.
(3) $\operatorname{im}(T)=\operatorname{Span}\left(\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}\right)$
(4) $\operatorname{ker}(T)=\operatorname{null}\left([T]_{\alpha}^{\beta}\right) \quad$ (use that 'matrix multiplication works')
(5) $\operatorname{im}(T)=\operatorname{col}\left([T]_{\alpha}^{\beta}\right) \quad$ (use that 'matrix multiplication works')
(6) T is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$

Bonus: Let $\mathbf{b} \in \operatorname{im}(T)$ so that $\mathbf{b}=T\left(\mathbf{x}_{0}\right)$ for $\mathbf{x}_{0} \in V$. Then show

$$
T^{-1}(\{\mathbf{b}\}):=\{\mathbf{x} \in V \mid T(\mathbf{x})=\mathbf{b}\}=\left\{\mathbf{x}_{0}+\mathbf{v} \mid \mathbf{v} \in \operatorname{ker}(T)\right\}
$$

Conclude that there is a bijection between $T^{-1}(\{\mathbf{b}\})$ and $\operatorname{ker}(T)$.

What does it mean to solve linear equations?

Fix $a_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.
Question: For each $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$, does there exist $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i} \quad \text { for each } i=1, \ldots, m ?
$$

- If no, then for which \mathbf{b} does there exist such an \mathbf{x} ?
- If yes, how many 'different' \mathbf{x} are there for fixed \mathbf{b} ?

Answer: Let $A=\left[a_{i j}\right] \in M_{m \times n}(\mathbb{R})$, which defines $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i} \quad \text { for each } i=1, \ldots, m
$$

if and only if

$$
A \mathbf{x}=\mathbf{b} \text {, or equivalently } T(\mathbf{x})=\mathbf{b} .
$$

Thus, we have the following answer:

- There exists \mathbf{x} solving the equation if and only if $\mathbf{b} \in \operatorname{im}(T)$.
- For each fixed \mathbf{b}, the set of solutions is $T^{-1}(\{\mathbf{b}\})$, which we showed is in bijection with $\operatorname{ker}(T)$.

Towards The Dimension Theorem

We have reduced the question of existence and uniqueness of solutions to linear equations to understanding the image and kernel of a linear map $T: V \rightarrow W$.
What can we say about $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ in general? Let's look at some examples:
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 0\right)$
$-\operatorname{dim} \operatorname{ker}(T)=0, \operatorname{dimim}(T)=2$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, 0,0\right)$

- $\operatorname{dim} \operatorname{ker}(T)=1, \operatorname{dimim}(T)=1$.
(3) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto(0,0,0)$
- $\operatorname{dim} \operatorname{ker}(T)=2, \operatorname{dim} \operatorname{im}(T)=0$.
(4) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-k}, 0, \ldots, 0\right)$
- $\operatorname{dim} \operatorname{ker}(T)=k, \operatorname{dimim}(T)=n-k$.

Claim: Every linear $T: V \rightarrow W$ looks like this wrt some bases.
Corollary: Let $T: V \rightarrow W$ linear, with $\operatorname{dim} V=n$. Then $\operatorname{dim} V=n=k+(n-k)=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dimim}(T)$

Injectivity and surjectivity revisited

Let V, W be vector spaces and $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be bases, and fix any of the following equivalent pieces of data:
(1) $T: V \rightarrow W$
(2) $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ a list of vectors in W
(3) $[T]_{\alpha}^{\beta}$ a matrix of numbers $a_{i j} \in \mathbb{R}$
(4) a system of equations $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=$? for $i=1, \ldots, m$
T is surjective if for any $\mathbf{b} \in W$, there is $\mathbf{x} \in V$ with $T(\mathbf{x})=\mathbf{b}$.
In each of the above pictures, we have an equivalent condition:
(1) $\operatorname{im}(T)=W$
(2) $\operatorname{Span}\left(\left\{T\left(\mathbf{v}_{i}\right)\right\}=W\right.$
(3) $\operatorname{col}\left([T]_{\alpha}^{\beta}\right)=W$
(4) for any $\mathbf{b} \in W$, there exists \mathbf{x} solving $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}$

Similarly: T is injective if $T(\mathbf{x})=T(\mathbf{y})$ imples $\mathbf{x}=\mathbf{y}$. Equivalently,
(1) $\operatorname{ker}(T)=\{\mathbf{0}\}$
(2) $\left\{T\left(\mathbf{v}_{\boldsymbol{i}}\right)\right\}$ is linearly independent.
(3) $\operatorname{null}\left([T]_{\alpha}^{\beta}\right)=\{\mathbf{0}\}$
(4) For $\mathbf{b} \in \operatorname{im}(T)$, solution to $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}$ is unique

Towards The Dimension Theorem

We have reduced the question of existence and uniqueness of solutions to linear equations to understanding the image and kernel of a linear map $T: V \rightarrow W$.
What can we say about $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ in general? Let's look at some examples:
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 0\right)$
$-\operatorname{dim} \operatorname{ker}(T)=0, \operatorname{dimim}(T)=2$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, 0,0\right)$

- $\operatorname{dim} \operatorname{ker}(T)=1, \operatorname{dimim}(T)=1$.
(3) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto(0,0,0)$
- $\operatorname{dim} \operatorname{ker}(T)=2, \operatorname{dim} \operatorname{im}(T)=0$.
(4) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-k}, 0, \ldots, 0\right)$
- $\operatorname{dim} \operatorname{ker}(T)=k, \operatorname{dimim}(T)=n-k$.

Claim: Every linear $T: V \rightarrow W$ 'looks like this' wrt some bases.
Corollary: Let $T: V \rightarrow W$ linear, with $\operatorname{dim} V=n$. Then $\operatorname{dim} V=n=k+(n-k)=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dimim}(T)$

Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let $T: V \rightarrow W$ be a linear map, with V finite dimensional. Then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{im}(T)
$$

Let's prove the dimension theorem using the following steps:
To fix notation, let's say $\operatorname{dim} V=n$.
(1) Since $\operatorname{ker}(T) \subset V$, we know $k:=\operatorname{dim} \operatorname{ker}(T) \leq \operatorname{dim} V=n$.
(2) Choose a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for $\operatorname{ker}(T)$, and extend to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for V.
(3) Show that $\left\{T\left(\mathbf{v}_{k+1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ define a basis for $\operatorname{im}(T)$. (If it were linearly dependent, find a 'new' element of $\operatorname{ker}(T)$)
(4) Conclude that $\operatorname{dim} \operatorname{im}(T)=n-k$.
(5) Use that $n=k+(n-k)$ to prove the theorem.

Suppose $\operatorname{dim} W=m$ is finite, and extend $\left\{T\left(\mathbf{v}_{k+1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ to a basis for W.
What is [T] with respect to these bases?

Discussion: Applications of the dimension theorem

Let $T: V \rightarrow W$ and V and W finite dimensional. Recall:
T is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$
T is surjective if and only if $\operatorname{im}(T)=W$.
Theorem: $\quad \operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dimim}(T)$
(a) If $\operatorname{dim}(\operatorname{ker} T)=0$ can you determine if T is injective? What about surjective? (doesn't require the theorem)
(b) If $\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} W$ can you determine if T is injective? What about surjective? (doesn't require the theorem)
(c) If $\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} V$ can you determine if T is injective? What about surjective?
(d) If $\operatorname{dim} V=\operatorname{dim} W$ and T is injective, can you determine if T is surjective? What about vice versa?
(e) If $\operatorname{dim} V<\operatorname{dim} W$, can T be injective? Can it be surjective?
(f) If $\operatorname{dim} V>\operatorname{dim} W$, can T be injective? Can it be surjective?

Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:
(1) $T: V \rightarrow W$
(2) $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ a list of vectors in W
(3) $[T]_{\alpha}^{\beta}$ a matrix of numbers $a_{i j} \in \mathbb{R}$
(4) a system of equations $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=$? for $i=1, \ldots, m$
and for each of these, an interpretation of injective and surjective.
Combine these with the dimension theorem to show:
(1) Let $W=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right\}$. Show $\operatorname{dim} W=n-1$ unless the a_{i} are all zero.
(2) Let V be n dimensional and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subset V$. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If $\operatorname{Span}(S)=V$ then S must be a basis.
(3) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear map with $[T] \in M_{n \times n}(\mathbb{R})$. Show that if $[T$] has linearly dependent columns, then T is not surjective.

