MAT223 - Final Lecture A conceptual overview of the course

Dylan Butson

University of Toronto

December 8, 2020

Motivation for today's lecture

- Today, I'll give a conceptual overview of the course:
- Linear algebra is about solving systems of linear equations:

 $a_{i1}x_1 + ... + a_{in}x_n = b_i$ for each i = 1, ..., m?

- If no, then for which b does there exist such an x?
- If yes, how many 'different' x are there for fixed b?
- We have learned algorithms to answer these questions.
- We also learned some geometric intuition for how these work, in terms of vectors in ℝⁿ and linear transformations ℝⁿ to ℝ^m.
- We've also developed some language to formalize this geometric intution into precise reasoning, which allows us to answer these questions without doing as much computation.
- ► This is done more in 224, with 'general' vector spaces V.

Discussion: Coordinates with respect to a basis

Let V be a vector space and $\beta = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a basis for V. Recall that we proved:

Proposition: For every vector $\mathbf{v} \in V$, there **exists** a **unique**

 $x_1, ..., x_n \in \mathbb{R}$ such that $\mathbf{v} = x_1 \mathbf{v}_1 + ... + x_n \mathbf{v}_n$ **Notation:** We call $(x_1, ..., x_n)$ the *coordinate vector* of **v** with respect to α , and write $[\mathbf{v}]^{\alpha} = [x_i]$ as a column vector. **Discussion**: Let $V = \mathbb{R}^2$ and $\alpha = \{(1, -1), (1, 1)\}$. Determine (1) $[e_1]_{\alpha}$ (2) $[e_2]_{\alpha}$ (3) $[e_1 + e_2]_{\alpha}$ where $\mathbf{e}_1 = (1,0), \mathbf{e}_2 = (0,1)$ are the standard basis vectors. Let $V = P_2(\mathbb{R})$ and $\alpha = \{1, 1 + x, 1 + x + x^2\}$. Determine (a) $[1]_{\alpha}$ (b) $[x]_{\alpha}$ (c) $[x^2]_{\alpha}$ (d) $[a + bx + cx^2]_{\alpha}$ where a, b, c are arbitrary scalars. (e) Show that $[a + bx + cx^2]_{\alpha} = a[1]_{\alpha} + b[x]_{\alpha} + c[x^2]_{\alpha}$.

3/16

Discussion: Linear Transformations

Throughout, let S, S' be sets and V, W be vector spaces.

Definition: A function $f : S \to S'$ is a rule that assigns to each $s \in S$ and element $f(s) \in S'$; we write $s \mapsto f(s)$.

The set S is called the *domain* of f, and the set S' the *target* of f.

Definition: A function $T: V \rightarrow W$ is called *linear* if

 $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ and $T(c\mathbf{x}) = cT(\mathbf{x})$ for each $\mathbf{x}, \mathbf{y} \in V, c \in \mathbb{R}$. Equivalently, $T(c\mathbf{x} + \mathbf{y}) = cT(\mathbf{x}) + T(\mathbf{y})$. **Example:** $T : \mathbb{R} \to \mathbb{R}$ defined by $T(x) = x^n$ is linear iff n = 1.

Discussion: Which of the following are linear? (with proof) (1) $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\mathbf{x}) = A\mathbf{x}$ for $A \in M_{m \times n}(\mathbb{R})$. (2) $T : P_n(\mathbb{R}) \to P_n(\mathbb{R})$ defined by $T(p) = \frac{d}{dx}p$. (3) $T : M_{m \times n}(\mathbb{R}) \to M_{m \times r}(\mathbb{R})$ by T(A) = AB for $B \in M_{n \times r}(\mathbb{R})$.

(4) Let $S = {\mathbf{v}_1, ..., \mathbf{v}_n}$ be a basis for V. Show the following: For each $\mathbf{y}_1, ..., \mathbf{y}_n \in W$ there exists a unique linear $T : V \to W$ such that $T(\mathbf{v}_j) = \mathbf{y}_j$ for each j = 1, ..., n.

Matrices and Linear Transformations

Let V, W be vector spaces and $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}, \beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$ be bases for them. Thus, dim V = n, dim W = m.

Let $T: V \to W$ be a linear transformation. We just proved that T is determined uniquely by the vectors $T(\mathbf{v}_j) \in W$ for j = 1, ..., n. For each j, the vector $T(\mathbf{v}_j) \in W$ has a unique decomposition $T(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + ... + a_{mj}\mathbf{w}_m$ for some $a_{ij} \in \mathbb{R}$ for i = 1, ..., m. As a column vector, we have $[T(\mathbf{v}_j)]^\beta = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix} \in \mathbb{R}^m$

In summary, given α, β we can record the information of T by:

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} T(\mathbf{v}_1) | & \cdots & |T(\mathbf{v}_n) \end{bmatrix}^{\beta} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{ij} & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in M_{m \times n}(\mathbb{R})$$

The j^{th} column of $[T]^{\beta}_{\alpha}$ describes $T(\mathbf{v}_j)$, the image under T of the j^{th} vector \mathbf{v}_j in the basis α , in terms of coordinates defined by β .

Discussion: Matrices and Linear Transformations

Let $V = \mathbb{R}^2$, $W = \mathbb{R}^3$, $\alpha = \{\mathbf{e}_1, \mathbf{e}_2\}$, $\beta = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ the standard bases, and $\alpha' = \{\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2\}, \beta' = \{\mathbf{f}_1 + \mathbf{f}_2, \mathbf{f}_1 - \mathbf{f}_2, \mathbf{f}_2 + \mathbf{f}_3\}$. Define a linear map $T : V \to W$ by $T(\mathbf{e}_1) = \mathbf{f}_1 + \mathbf{f}_2$ $T(\mathbf{e}_2) = \mathbf{f}_2 + \mathbf{f}_3$ and calculate

(1) the matrix $[T]^{\beta}_{\alpha}$ (2) the matrix $[T]^{\beta}_{\alpha'}$ (3) the matrix $[T]^{\beta'}_{\alpha}$

Let
$$V = P_2(\mathbb{R})$$
, and $\alpha = \{1, x, x^2\}, \beta = \{1 + x, 1 - x, x^2\}.$
Define $T : V \to V$ by $T(p) = \frac{d}{dx}p$ and calculate
(4) the matrix $[T]^{\alpha}_{\alpha}$
(5) the matrix $[T]^{\beta}_{\alpha}$
(6) the matrix $[T]^{\alpha}_{\beta}$

Bonus: Let V, W vector spaces, α, β bases, and $T : V \to W$. Prove that $[T(\mathbf{x})]^{\beta} = [T]^{\beta}_{\alpha} \cdot [\mathbf{x}]^{\alpha}$ for each $\mathbf{x} \in V$. This is just showing that '**matrix multiplication works**'. Discussion: Injective and Surjective Functions Let S, \tilde{S} be sets, $R \subset S, \tilde{R} \subset \tilde{S}$ be subsets and $f : S \to \tilde{S}$. Definition:

- ▶ The image of R under f is $f(R) = \{f(s) | s \in R\} \subset \tilde{S}$.
- ▶ The preimage of \tilde{R} under f, $f^{-1}(\tilde{R}) = \{s \in S | f(s) \in \tilde{R}\} \subset S$ Warning: The preimage is always defined even if f is not invertible.

Definition: f is *injective* if knowing f(s) = f(t) implies s = t. f is *surjective* if for each $\tilde{s} \in \tilde{S}$ there exists $s \in S$ with $f(s) = \tilde{s}$. f is *bijective* if it is injective and surjective.

Discussion: Prove the following:

 f is surjective if and only if f(S) = Š, if and only if: For each š ∈ Š, f⁻¹({š}) is non-empty, i.e. f⁻¹({š}) ≠ Ø.
 f is injective if and only if: For each š ∈ Š, f⁻¹({š}) is either a single point {s} or empty Ø.
 f is bijective if and only if: For each š ∈ Š, there exists a unique s ∈ S such that f(s) = š.

Kernel and Image

Let V, W be vector spaces and $T: V \rightarrow W$ a linear map.

Definition: The *kernel* of *T* is the subset of *V* defined by $ker(T) = T^{-1}(\{\mathbf{0}\}) = \{\mathbf{v} \in V | T(\mathbf{v}) = \mathbf{0}\}$ **Example:** Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2, x_3) = (x_1, x_2 - x_3)$. $ker(T) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = 0, x_2 = x_3\}$

Definition: The *image* of *T* is the subset of *W* defined by $im(T) = T(V) = \{T(\mathbf{v}) \in W | \mathbf{v} \in V\}$ **Example:** Define $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(x_1, x_2) = (x_1, x_2, x_1 - x_2)$. $im(T) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_3 = x_1 - x_2\}$

Discussion: Kernel and Image

Let V, W be vector spaces with bases $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}$ and $\beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$, and $T : V \to W$ a linear map. Prove the following:

(1) ker(
$$T$$
) is a subspace of V .

- (2) im(T) is a subspace of W.
- (3) $im(T) = Span(\{T(v_1), ..., T(v_n)\})$
- (4) ker(T) = null([T]^{β}_{α}) (use that 'matrix multiplication works')
- (5) $\operatorname{im}(T) = \operatorname{col}([T]_{\alpha}^{\beta})$ (use that 'matrix multiplication works')
- (6) T is injective if and only if ker(T) = {**0**}

Bonus: Let $\mathbf{b} \in im(\mathcal{T})$ so that $\mathbf{b} = \mathcal{T}(\mathbf{x}_0)$ for $\mathbf{x}_0 \in V$. Then show

$$\mathcal{T}^{-1}(\{\mathbf{b}\}) := \{\mathbf{x} \in \mathcal{V} | \mathcal{T}(\mathbf{x}) = \mathbf{b}\} = \{\mathbf{x}_0 + \mathbf{v} | \mathbf{v} \in \ker(\mathcal{T})\}$$

Conclude that there is a bijection between $T^{-1}({\mathbf{b}})$ and ker(T).

What does it mean to solve linear equations? Fix $a_{ij} \in \mathbb{R}$ for i = 1, ..., m and j = 1, ..., n. Question: For each $\mathbf{b} = (b_1, ..., b_m)$, does there exist $\mathbf{x} = (x_1, ..., x_n)$ such that $a_{i1}x_1 + ... + a_{in}x_n = b_i$ for each i = 1, ..., m? If no, then for which \mathbf{b} does there exist such an \mathbf{x} ?

► If yes, how many 'different' **x** are there for fixed **b**?

Answer: Let $A = [a_{ij}] \in M_{m \times n}(\mathbb{R})$, which defines $T : \mathbb{R}^n \to \mathbb{R}^m$. Then

 $a_{i1}x_1 + ... + a_{in}x_n = b_i$ for each i = 1, ..., m

if and only if

$$A\mathbf{x} = \mathbf{b}$$
, or equivalently $T(\mathbf{x}) = \mathbf{b}$

Thus, we have the following answer:

- There exists **x** solving the equation if and only if $\mathbf{b} \in im(T)$.
- ► For each fixed **b**, the set of solutions is T⁻¹({**b**}), which we showed is in bijection with ker(T).

Towards The Dimension Theorem

We have reduced the question of **existence** and **uniqueness** of solutions to linear equations to understanding the **image** and **kernel** of a linear map $T : V \rightarrow W$.

What can we say about im(T) and ker(T) in general? Let's look at some examples:

(1)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 $(x_1, x_2) \mapsto (x_1, x_2, 0)$
 $\blacktriangleright \dim \ker(T) = 0$, $\dim \operatorname{im}(T) = 2$.
(2) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (x_1, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 1$, $\dim \operatorname{im}(T) = 1$.
(3) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (0, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 2$, $\dim \operatorname{im}(T) = 0$.
(4) $T : \mathbb{R}^n \to \mathbb{R}^m$ $(x_1, ..., x_n) \mapsto (x_1, ..., x_{n-k}, 0, ..., 0)$
 $\vdash \dim \ker(T) = k$, $\dim \operatorname{im}(T) = n - k$.
Claim: Every linear $T : V \to W$ looks like this wrt some bases.
Corollary: Let $T : V \to W$ linear, with $\dim V = n$. Then
 $\dim V = n = k + (n - k) = \dim \ker(T) + \dim \operatorname{im}(T)$

Injectivity and surjectivity revisited

Let V, W be vector spaces and $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}, \beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$ be bases, and fix any of the following equivalent pieces of data: (1) $T: V \to W$ (2) { $T(\mathbf{v}_1), ..., T(\mathbf{v}_n)$ } a list of vectors in W (3) $[T]^{\beta}_{\alpha}$ a matrix of numbers $a_{ii} \in \mathbb{R}$ (4) a system of equations $a_{i1}x_1 + ... + a_{in}x_n = ?$ for i = 1, ..., mT is surjective if for any $\mathbf{b} \in W$, there is $\mathbf{x} \in V$ with $T(\mathbf{x}) = \mathbf{b}$. In each of the above pictures, we have an equivalent condition: (1) im(T) = W(2) Span($\{T(\mathbf{v}_i)\} = W$ (3) $col([T]^{\beta}_{\alpha}) = W$ (4) for any $\mathbf{b} \in W$, there exists **x** solving $a_{i1}x_1 + \ldots + a_{in}x_n = b_i$ Similarly: T is injective if $T(\mathbf{x}) = T(\mathbf{y})$ imples $\mathbf{x} = \mathbf{y}$. Equivalently,

(1) ker $(T) = \{\mathbf{0}\}$ (2) $\{T(\mathbf{v}_i)\}$ is linearly independent. (3) null $([T]_{\alpha}^{\beta}) = \{\mathbf{0}\}$ (4) For $\mathbf{b} \in \operatorname{im}(T)$, solution to $a_{i1}x_1 + ... + a_{in}x_n = b_i$ is unique 12/16

Towards The Dimension Theorem

We have reduced the question of **existence** and **uniqueness** of solutions to linear equations to understanding the **image** and **kernel** of a linear map $T : V \rightarrow W$.

What can we say about im(T) and ker(T) in general? Let's look at some examples:

(1)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 $(x_1, x_2) \mapsto (x_1, x_2, 0)$
 $\blacktriangleright \dim \ker(T) = 0$, $\dim \operatorname{im}(T) = 2$.
(2) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (x_1, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 1$, $\dim \operatorname{im}(T) = 1$.
(3) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (0, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 2$, $\dim \operatorname{im}(T) = 0$.
(4) $T : \mathbb{R}^n \to \mathbb{R}^m$ $(x_1, ..., x_n) \mapsto (x_1, ..., x_{n-k}, 0, ..., 0)$
 $\vdash \dim \ker(T) = k$, $\dim \operatorname{im}(T) = n - k$.
Claim: Every linear $T : V \to W$ 'looks like this' wrt some bases.
Corollary: Let $T : V \to W$ linear, with $\dim V = n$. Then
 $\dim V = n = k + (n - k) = \dim \ker(T) + \dim \operatorname{im}(T)$

Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let $T : V \to W$ be a linear map, with V finite dimensional. Then dim $V = \dim \ker(T) + \dim \operatorname{im}(T)$

Let's prove the dimension theorem using the following steps: To fix notation, let's say dim V = n.

- (1) Since ker(T) \subset V, we know $k := \dim \text{ker}(T) \leq \dim V = n$.
- (2) Choose a basis $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ for ker(*T*), and extend to a basis $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for *V*.
- (3) Show that $\{T(\mathbf{v}_{k+1}), ..., T(\mathbf{v}_n)\}$ define a basis for im(T). (If it were linearly dependent, find a 'new' element of ker(T))
- (4) Conclude that dim im(T) = n k.
- (5) Use that n = k + (n k) to prove the theorem.

Suppose dim W = m is finite, and extend $\{T(\mathbf{v}_{k+1}), ..., T(\mathbf{v}_n)\}$ to a basis for W.

What is [T] with respect to these bases?

Discussion: Applications of the dimension theorem

- Let $T: V \rightarrow W$ and V and W finite dimensional. Recall:
- T is injective if and only if ker(T) = {0}
- T is surjective if and only if im(T) = W.

Theorem: $\dim V = \dim \ker(T) + \dim \operatorname{im}(T)$

- (a) If dim(ker T) = 0 can you determine if T is injective? What about surjective? (doesn't require the theorem)
- (b) If dim(im T) = dim W can you determine if T is injective? What about surjective? (doesn't require the theorem)
- (c) If dim(im T) = dim V can you determine if T is injective? What about surjective?
- (d) If $\dim V = \dim W$ and T is injective, can you determine if T is surjective? What about vice versa?
- (e) If dim $V < \dim W$, can T be injective? Can it be surjective?
- (f) If dim $V > \dim W$, can T be injective? Can it be surjective?

Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:

(1)
$$T: V \to W$$

(2)
$$\{T(\mathbf{v}_1), ..., T(\mathbf{v}_n)\}$$
 a list of vectors in W

- (3) $[T]^{\beta}_{\alpha}$ a matrix of numbers $a_{ij} \in \mathbb{R}$
- (4) a system of equations $a_{i1}x_1 + ... + a_{in}x_n = ?$ for i = 1, ..., m

and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let
$$W = {\mathbf{x} \in \mathbb{R}^n | a_1 x_1 + ... + a_n x_n = 0}$$
. Show dim $W = n - 1$ unless the a_i are all zero.

(2) Let V be n dimensional and S = {v₁, ..., v_n} ⊂ V. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ a linear map with $[T] \in M_{n \times n}(\mathbb{R})$. Show that if [T] has linearly dependent columns, then T is not surjective.