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Review: Matrices of linear maps, yet again.

Let V, W be vector spaces and a = {vy,...,vp}, 8 = {w1,...,wp}
be bases. Then the following are equivalent data (in bijection):

> alinearmap T:V - W
> a list of vectors y; = T(v;) € W for j=1,...,n.

» a matrix of numbers a;; € R defined by

ayj
T(vj) = ayjwi + ... + amjWm [T(v))]? =
dmj
fori=1,...,mandj=1,..n.
Graphically, we write
a0 adn
(T = [T - 1T =] ¢ &y 1| €Munxn(R)
aml cc amn

The j* column of [T]g describes T(v;), the image under T of the

j™ vector v; in the basis «, in terms of coordinates defined by 3.



Review: Matrix multiplication works

Given the matrix [T]g we can recover T as:

T)=TQ_xv)=> x5T()=>_x (z w>
J=1 J=1 j=1 i=1

i=1 \j=1
X1

Thus, given [x]* = | : | , we find [T(x)]? = [T]2 - [x]*
Xn

This is the proof that matrix multiplication algorithm works.

This is the conceptual reason why matrices are used to solve linear
equations. (previously, this was a bonus exercise)
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Discussion: Composition of linear maps

Let U, V, W be vector spaces, S: U — Vand T : V — W linear.
We define the composition TS : U — W by TS(y) = T(S(y))
Exercise: Show that TS : U — W is linear.

Example: Let
S : R? — R3 defined by S(y1,y2) = (y1, y2,2y2)
T : R3 — R? defined by T(x1,x2,x3) = (x2,x3).
Then TS : R? — R? is calculated directly by
TS(y1,¥2) = T(y1,¥2,2y2) = (y2,2y2)
Exercise: Let
S : Py(R) — P1(R) defined by S(p(x)) = <L p(x)
T : P1(R) — P3(R) defined by T(p(x)) = x*p(x)
Calculate [S]S, [T]5, and [TS]g in terms of the standard bases
v={1,x,x2}, a = {1,x} and B = {1, x,x?,x3}.
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Composition and matrix multiplication
Let U, V, W be vector spaces, S: U — Vand T : V — W linear.
Fx bases v = {uy,...,up}, o = {v1,...,vp} and B = {wy,...,wp},
for U, V and W, respectively. Then we have matrices:

air o ain bii -+ bip
[Tla=|: & | and [SI5=|: b

am1 " 4mn] bp1 - bnp
Natural Question: How do we find [TS]Q?

TS(Uk) =T Z bjij = ijk (Z a,-jw,-> = Z Zaijbjk W/
j=1 j=1 i=1 i=1 \j=1
ail o an b1k
Thus [TS(u )P = | & 5 ¢ || ¢ | =TS
dml - dmn bnk
and so [TS) = [TS(u1)| -~ |TS(up))” = [T - [S]°

Exercise: Check this works in the example we just calculated. 5/9



Review: Injective, Surjective, Bijective
Let 5,5 be sets and f : S — 5. Recall the following:
Definition: f is injective if knowing f(s) = f(t) implies s = t.
f is surjective if for each § € S there exists s € S with f(s) = 3.
f is bijective if it is injective and surjective.

Moreover, we showed:

(1) f is surjective if and only if £(S) = S, if and only if:

For each § € S, f~1({3}) is non-empty, i.e. f~1({5}) # @.

(2) f is injective if and only if:

For each § € S, f~1({5}) is either a single point {s} or empty @.
(3) f is bijective if and only:

For each § € S, there exists a unique s € S such that f(s) = 5.

Exercise: Let f : S — S be bijective. Then there exists a unique
function g : S — S such that g(f(s)) = s and f(g(3)) = § for
eachscSandse S,

We call g the inverse of f, and write g(s) = f~1(s).

Warning: This is not to be confused with f~1({s}). 6/9



Discussion: Isomorphisms and Inverses

Let V, W be finite dimensional vector spacesand T : V — W a
linear transformation. Recall:

T is injective if and only if ker(T) = {0}
T is surjective if and only if im(T) = W.

Exercise: Suppose T : V — W is injective and surjective, and
that V, W are finite dimensional. Show that dim V =dim W.

Exercise: Suppose T : V — W and dim V = dim W. Show that
T injective if and only if T surjective, if and only if T bijective.

Definition: We say T : V — W is an isomorphism if it is bijective.

We also say V and W are isomorphic vector spaces.

In this case, there exists a unique function T1:W — V such
that T"'T =1y and TT 1 =1y.

Proposition: Choose bases «, 3. Then [T_l]g = ([T]g)_l.

For A € Mpyn(R), you know how to calculate A=t from mat223.
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Discussion: Towards Change of Basis

Given V., W with bases «, 3, we can encode T : V — W in [T]g
Natural Question: How does [x]®, [T] depend on choice «, 37
Let T=1:V — V. Then for any basis «a, [1]¢ = [1].

Given another o/ = {v1,...,v,}, we have [1]% = [vi| -+ |v,]”

Note the special propery: [1]<, XY = [1(x)]* = [x]*

Definition: We call [1]%, the change of basis matrix from o’ to c.

Example: Let o = {e1, ey} be the standard basis for R?, let
o ={(1,1),(1,-1)} and let x = (3,1) € R?.Then

= [3] o = 2] e =[] 4] eno e =t
Exercise: V = P1(R), a = {1+ x,—x}, o/ = {1+ 2x,1+ 3x},

and x =1 — x. Compute:
LS 5 G b P 4 Rl P
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Discussion: Change of Basis Continued

We can use a similar trick to describe [T]g under change of basis:
[Tlalg = [T, =715 and [IG[TIe=[TIE =Tl

Exercise: Let V = W = R2, « the standard basis,
o ={(2,0),(1,-1)},and T : V — V be T(x1,x) = (x1 + x2, x2)
Compute  [T]y  [1]¢  [uo  [Tle  [TIY

We can summarize this by: [l]g'[T]g[ﬂ]g, = [T]iﬁ

Inthecase V=W, a=p5 o =p" [1]e'[T]a[n]e, = [T]
In particular, taking T = 1, we find that [1]%" = ([1]%,)~%.
Definition: A, B € M, ,(R) are called similar if A= S~1BS.

Proposition: A, B € M, ,(R) are similar if and only if there exists
T:V — V and bases o, for V sit. A=[T]% and B = [T]g
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