MAT224 - LEC5101 - Lecture 7
 Composition of linear maps, isomorphisms, and change of basis

Dylan Butson
University of Toronto

February 25, 2020

Review: Matrices of linear maps, yet again.

Let V, W be vector spaces and $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be bases. Then the following are equivalent data (in bijection):

- a linear map $T: V \rightarrow W$
- a list of vectors $\mathbf{y}_{j}=T\left(\mathbf{v}_{j}\right) \in W$ for $j=1, \ldots, n$.
- a matrix of numbers $a_{i j} \in \mathbb{R}$ defined by

$$
T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m}
$$

$$
\left[T\left(\mathbf{v}_{j}\right)\right]^{\beta}=\left[\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right]
$$

for $i=1, \ldots, m$ and $j=1, \ldots, n$.
Graphically, we write

$$
[T]_{\alpha}^{\beta}=\left[\begin{array}{lll}
T\left(\mathbf{v}_{1}\right) \mid & \cdots & \mid T\left(\mathbf{v}_{n}\right)
\end{array}\right]^{\beta}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \in M_{m \times n}(\mathbb{R})
$$

The $j^{\text {th }}$ column of $[T]_{\alpha}^{\beta}$ describes $T\left(\mathbf{v}_{j}\right)$, the image under T of the $j^{\text {th }}$ vector \mathbf{v}_{j} in the basis α, in terms of coordinates defined by β.

Review: Matrix multiplication works

Given the matrix $[T]_{\alpha}^{\beta}$, we can recover T as:

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(\sum_{j=1}^{n} x_{j} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} x_{j} T\left(\mathbf{v}_{j}\right)=\sum_{j=1}^{n} x_{j}\left(\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i}\right) \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \mathbf{w}_{i}
\end{aligned}
$$

Thus, given $[\mathbf{x}]^{\alpha}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, we find $[T(\mathbf{x})]^{\beta}=[T]_{\alpha}^{\beta} \cdot[\mathbf{x}]^{\alpha}$
This is the proof that matrix multiplication algorithm works.
This is the conceptual reason why matrices are used to solve linear equations. (previously, this was a bonus exercise)

Discussion: Composition of linear maps

Let U, V, W be vector spaces, $S: U \rightarrow V$ and $T: V \rightarrow W$ linear.
We define the composition $T S: U \rightarrow W$ by $T S(\mathbf{y})=T(S(\mathbf{y}))$
Exercise: Show that $T S: U \rightarrow W$ is linear.
Example: Let
$S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $S\left(y_{1}, y_{2}\right)=\left(y_{1}, y_{2}, 2 y_{2}\right)$
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{3}\right)$.
Then $T S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is calculated directly by

$$
T S\left(y_{1}, y_{2}\right)=T\left(y_{1}, y_{2}, 2 y_{2}\right)=\left(y_{2}, 2 y_{2}\right)
$$

Exercise: Let
$S: P_{2}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})$ defined by $S(p(x))=\frac{d}{d x} p(x)$
$T: P_{1}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(p(x))=x^{2} p(x)$
Calculate $[S]_{\gamma}^{\alpha},[T]_{\alpha}^{\beta}$, and $[T S]_{\gamma}^{\beta}$ in terms of the standard bases $\gamma=\left\{1, x, x^{2}\right\}, \alpha=\{1, x\}$ and $\beta=\left\{1, x, x^{2}, x^{3}\right\}$.

Composition and matrix multiplication

Let U, V, W be vector spaces, $S: U \rightarrow V$ and $T: V \rightarrow W$ linear.
Fx bases $\gamma=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}, \alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $\beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$, for U, V and W, respectively. Then we have matrices:
$[T]_{\alpha}^{\beta}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & a_{i j} & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right] \quad$ and $\quad[S]_{\gamma}^{\alpha}=\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 p} \\ \vdots & b_{j k} & \vdots \\ b_{n 1} & \cdots & b_{n p}\end{array}\right]$
Natural Question: How do we find $[T S]_{\gamma}^{\beta}$?
$T S\left(\mathbf{u}_{k}\right)=T\left(\sum_{j=1}^{n} b_{j k} \mathbf{v}_{j}\right)=\sum_{j=1}^{n} b_{j k}\left(\sum_{i=1}^{m} a_{i j} \mathbf{w}_{i}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) \mathbf{w}_{i}$
Thus $\left[T S\left(\mathbf{u}_{k}\right)\right]^{\beta}=\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & a_{i j} & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right] \cdot\left[\begin{array}{c}b_{1 k} \\ \vdots \\ b_{n k}\end{array}\right]=[T]_{\alpha}^{\beta}\left[S\left(\mathbf{u}_{k}\right)\right]^{\alpha}$
and so $[T S]_{\gamma}^{\beta}=\left[\begin{array}{lll}T S\left(\mathbf{u}_{1}\right) \mid & \cdots & \mid T S\left(\mathbf{u}_{p}\right)\end{array}\right]^{\beta}=[T]_{\alpha}^{\beta} \cdot[S]_{\gamma}^{\alpha}$
Exercise: Check this works in the example we just calculated.

Review: Injective, Surjective, Bijective

Let S, \tilde{S} be sets and $f: S \rightarrow \tilde{S}$. Recall the following:
Definition: f is injective if knowing $f(s)=f(t)$ implies $s=t$.
f is surjective if for each $\tilde{s} \in \tilde{S}$ there exists $s \in S$ with $f(s)=\tilde{s}$.
f is bijective if it is injective and surjective.
Moreover, we showed:
(1) f is surjective if and only if $f(S)=\tilde{S}$, if and only if:

For each $\tilde{s} \in \tilde{S}, f^{-1}(\{\tilde{s}\})$ is non-empty, i.e. $f^{-1}(\{\tilde{s}\}) \neq \varnothing$.
(2) f is injective if and only if:

For each $\tilde{s} \in \tilde{S}, f^{-1}(\{\tilde{s}\})$ is either a single point $\{s\}$ or empty \varnothing.
(3) f is bijective if and only:

For each $\tilde{s} \in \tilde{S}$, there exists a unique $s \in S$ such that $f(s)=\tilde{s}$.
Exercise: Let $f: S \rightarrow \tilde{S}$ be bijective. Then there exists a unique function $g: \tilde{S} \rightarrow S$ such that $g(f(s))=s$ and $f(g(\tilde{s}))=\tilde{s}$ for each $s \in S$ and $\tilde{s} \in \tilde{S}$.
We call g the inverse of f, and write $g(s)=f^{-1}(s)$.
Warning: This is not to be confused with $f^{-1}(\{s\})$.

Discussion: Isomorphisms and Inverses

Let V, W be finite dimensional vector spaces and $T: V \rightarrow W$ a linear transformation. Recall:
T is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$
T is surjective if and only if $\operatorname{im}(T)=W$.
Exercise: Suppose $T: V \rightarrow W$ is injective and surjective, and that V, W are finite dimensional. Show that $\operatorname{dim} V=\operatorname{dim} W$.

Exercise: Suppose $T: V \rightarrow W$ and $\operatorname{dim} V=\operatorname{dim} W$. Show that T injective if and only if T surjective, if and only if T bijective.

Definition: We say $T: V \rightarrow W$ is an isomorphism if it is bijective. We also say V and W are isomorphic vector spaces.
In this case, there exists a unique function $T^{-1}: W \rightarrow V$ such that $T^{-1} T=\mathbb{1}_{V}$ and $T T^{-1}=\mathbb{1}_{W}$.
Proposition: Choose bases α, β. Then $\left[T^{-1}\right]_{\beta}^{\alpha}=\left([T]_{\alpha}^{\beta}\right)^{-1}$.
For $A \in M_{n \times n}(\mathbb{R})$, you know how to calculate A^{-1} from mat223.

Discussion: Towards Change of Basis

Given V, W with bases α, β, we can encode $T: V \rightarrow W$ in $[T]_{\alpha}^{\beta}$.
Natural Question: How does $[\mathbf{x}]^{\alpha},[T]_{\alpha}^{\beta}$ depend on choice α, β ?
Let $T=\mathbb{1}: V \rightarrow V$. Then for any basis $\alpha,[\mathbb{1}]_{\alpha}^{\alpha}=[1]$.
Given another $\alpha^{\prime}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, we have $[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}=\left[\begin{array}{lll}\mathbf{v}_{1} \mid & \cdots & \left.\mid \mathbf{v}_{n}\right]^{\alpha}\end{array}\right.$
Note the special propery: $[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}[\mathbf{x}]^{\alpha^{\prime}}=[\mathbb{1}(\mathbf{x})]^{\alpha}=[\mathbf{x}]^{\alpha}$
Definition: We call $[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}$ the change of basis matrix from α^{\prime} to α.
Example: Let $\alpha=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the standard basis for \mathbb{R}^{2}, let $\alpha^{\prime}=\{(1,1),(1,-1)\}$ and let $\mathbf{x}=(3,1) \in \mathbb{R}^{2}$. Then $[\mathbf{x}]^{\alpha}=\left[\begin{array}{l}3 \\ 1\end{array}\right][\mathbf{x}]^{\alpha^{\prime}}=\left[\begin{array}{l}2 \\ 1\end{array}\right][\mathbb{1}]_{\alpha^{\prime}}^{\alpha}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \quad$ and $[\mathbf{x}]^{\alpha}=[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}[\mathbf{x}]^{\alpha^{\prime}}$

Exercise: $V=P_{1}(\mathbb{R}), \alpha=\{1+x,-x\}, \alpha^{\prime}=\{1+2 x, 1+3 x\}$, and $\mathbf{x}=1-x$. Compute:

$$
\left[\begin{array}{lll}
{[\mathbf{x}]^{\alpha}} & {[\mathbf{x}]^{\alpha^{\prime}}} & {[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}}
\end{array} \quad[\mathbb{1}]_{\alpha^{\prime}}^{\alpha} \cdot[\mathbf{x}]^{\alpha^{\prime}}\right.
$$

Discussion: Change of Basis Continued

We can use a similar trick to describe $[T]_{\alpha}^{\beta}$ under change of basis:
$[T]_{\alpha}^{\beta}[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}=[T \mathbb{1}]_{\alpha^{\prime}}^{\beta}=[T]_{\alpha^{\prime}}^{\beta} \quad$ and $\quad[\mathbb{1}]_{\beta}^{\beta^{\prime}}[T]_{\alpha}^{\beta}=[\mathbb{1} T]_{\alpha}^{\beta^{\prime}}=[T]_{\alpha}^{\beta^{\prime}}$
Exercise: Let $V=W=\mathbb{R}^{2}, \alpha$ the standard basis,
$\alpha^{\prime}=\{(2,0),(1,-1)\}$, and $T: V \rightarrow V$ be $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{2}\right)$
$\left.\begin{array}{ccccc}\text { Compute } & {[T]_{\alpha}^{\alpha}} & {[\mathbb{1}]_{\alpha}^{\alpha^{\prime}}} & {[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}} & {[T]_{\alpha^{\prime}}^{\alpha}}\end{array}\right][T]_{\alpha}^{\alpha^{\prime}}$
We can summarize this by: $\quad[\mathbb{1}]_{\beta}^{\beta^{\prime}}[T]_{\alpha}^{\beta}[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}=[T]_{\alpha^{\prime}}^{\beta^{\prime}}$
In the case $V=W, \alpha=\beta, \alpha^{\prime}=\beta^{\prime}: \quad[\mathbb{1}]_{\alpha}^{\alpha^{\prime}}[T]_{\alpha}^{\alpha}[\mathbb{1}]_{\alpha^{\prime}}^{\alpha}=[T]_{\alpha^{\prime}}^{\alpha^{\prime}}$ In particular, taking $T=\mathbb{1}$, we find that $[\mathbb{1}]_{\alpha}^{\alpha^{\prime}}=\left([\mathbb{1}]_{\alpha^{\prime}}^{\alpha}\right)^{-1}$.
Definition: $A, B \in M_{n \times n}(\mathbb{R})$ are called similar if $A=S^{-1} B S$.
Proposition: $A, B \in M_{n \times n}(\mathbb{R})$ are similar if and only if there exists $T: V \rightarrow V$ and bases α, β for V s.t. $A=[T]_{\alpha}^{\alpha}$ and $B=[T]_{\beta}^{\beta}$.

