MAT224 - LEC5101 - Lecture 7 Composition of linear maps, isomorphisms, and change of basis

Dylan Butson

University of Toronto

February 25, 2020

Review: Matrices of linear maps, yet again.

Let V, W be vector spaces and $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}, \beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$ be bases. Then the following are equivalent data (in bijection):

▶ a linear map
$$T: V o W$$

▶ a list of vectors
$$\mathbf{y}_j = T(\mathbf{v}_j) \in W$$
 for $j = 1, ..., n$.

▶ a matrix of numbers $a_{ij} \in \mathbb{R}$ defined by

$$T(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + \dots + a_{mj}\mathbf{w}_m \qquad [T(\mathbf{v}_j)]^\beta = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

for
$$i = 1, ..., m$$
 and $j = 1, ..., n$.

Graphically, we write

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} T(\mathbf{v}_1) | & \cdots & |T(\mathbf{v}_n) \end{bmatrix}^{\beta} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{ij} & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in M_{m \times n}(\mathbb{R})$$

The j^{th} column of $[T]^{\beta}_{\alpha}$ describes $T(\mathbf{v}_j)$, the image under T of the j^{th} vector \mathbf{v}_j in the basis α , in terms of coordinates defined by β .

[...]

Review: Matrix multiplication works

Given the matrix $[T]^{\beta}_{\alpha}$, we can recover T as:

$$T(\mathbf{x}) = T\left(\sum_{j=1}^{n} x_j \mathbf{v}_j\right) = \sum_{j=1}^{n} x_j T(\mathbf{v}_j) = \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{m} a_{ij} \mathbf{w}_i\right)$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j\right) \mathbf{w}_i$$

Thus, given
$$[\mathbf{x}]^{\alpha} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, we find $[T(\mathbf{x})]^{\beta} = [T]^{\beta}_{\alpha} \cdot [\mathbf{x}]^{\alpha}$

This is the proof that **matrix multiplication algorithm works**. This is the conceptual reason why matrices are used to solve linear equations. (previously, this was a bonus exercise)

Discussion: Composition of linear maps

Let U, V, W be vector spaces, $S : U \to V$ and $T : V \to W$ linear. We define the composition $TS : U \to W$ by $TS(\mathbf{y}) = T(S(\mathbf{y}))$ **Exercise:** Show that $TS : U \to W$ is linear.

Example: Let $S: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $S(y_1, y_2) = (y_1, y_2, 2y_2)$ $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1, x_2, x_3) = (x_2, x_3)$. Then $TS : \mathbb{R}^2 \to \mathbb{R}^2$ is calculated directly by $TS(y_1, y_2) = T(y_1, y_2, 2y_2) = (y_2, 2y_2)$ Exercise: 1 et $S: P_2(\mathbb{R}) \to P_1(\mathbb{R})$ defined by $S(p(x)) = \frac{d}{dx}p(x)$ $T: P_1(\mathbb{R}) \to P_3(\mathbb{R})$ defined by $T(p(x)) = x^2 p(x)$ Calculate $[S]^{\alpha}_{\gamma}$, $[T]^{\beta}_{\alpha}$, and $[TS]^{\beta}_{\gamma}$ in terms of the standard bases $\gamma = \{1, x, x^2\}, \alpha = \{1, x\} \text{ and } \beta = \{1, x, x^2, x^3\}.$

Composition and matrix multiplication

Let U, V, W be vector spaces, $S: U \to V$ and $T: V \to W$ linear. Fx bases $\gamma = {\mathbf{u}_1, ..., \mathbf{u}_p}, \alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}$ and $\beta = {\mathbf{w}_1, ..., \mathbf{w}_m}, \beta$ for U, V and W, respectively. Then we have matrices:

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{ij} & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \text{ and } [S]_{\gamma}^{\alpha} = \begin{bmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & b_{jk} & \vdots \\ b_{n1} & \cdots & b_{np} \end{bmatrix}$$
Natural Question: How do we find $[TS]^{\beta}$?

Natural Question: How do we find [13]7:

$$TS(\mathbf{u}_{k}) = T\left(\sum_{j=1}^{n} b_{jk}\mathbf{v}_{j}\right) = \sum_{j=1}^{n} b_{jk}\left(\sum_{i=1}^{m} a_{ij}\mathbf{w}_{i}\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij}b_{jk}\right)\mathbf{w}_{i}$$

Thus $[TS(\mathbf{u}_{k})]^{\beta} = \begin{bmatrix}a_{11} & \cdots & a_{1n}\\ \vdots & a_{ij} & \vdots\\ a_{m1} & \cdots & a_{mn}\end{bmatrix} \cdot \begin{bmatrix}b_{1k}\\ \vdots\\ b_{nk}\end{bmatrix} = [T]^{\beta}_{\alpha}[S(\mathbf{u}_{k})]^{\alpha}$
and so $[TS]^{\beta}_{\gamma} = [TS(\mathbf{u}_{1})| & \cdots & |TS(\mathbf{u}_{p})]^{\beta} = [T]^{\beta}_{\alpha} \cdot [S]^{\alpha}_{\gamma}$
Exercise: Check this works in the example we just calculated.

Review: Injective, Surjective, Bijective

Let S, \tilde{S} be sets and $f : S \to \tilde{S}$. Recall the following: **Definition:** f is *injective* if knowing f(s) = f(t) implies s = t. f is *surjective* if for each $\tilde{s} \in \tilde{S}$ there exists $s \in S$ with $f(s) = \tilde{s}$. f is *bijective* if it is injective and surjective.

Moreover, we showed:

 f is surjective if and only if f(S) = Š, if and only if: For each š ∈ Š, f⁻¹({š}) is non-empty, i.e. f⁻¹({š}) ≠ Ø.
 f is injective if and only if: For each š ∈ Š, f⁻¹({š}) is either a single point {s} or empty Ø.
 f is bijective if and only: For each š ∈ Š, there exists a unique s ∈ S such that f(s) = š.
 Exercise: Let f : S → Š be bijective. Then there exists a unique function g : Š → S such that g(f(s)) = s and f(g(š)) = š for each s ∈ Š, and š ∈ Š.

We call g the inverse of f, and write $g(s) = f^{-1}(s)$.

Warning: This is not to be confused with $f^{-1}({s})$.

Discussion: Isomorphisms and Inverses

Let V, W be finite dimensional vector spaces and $T : V \rightarrow W$ a linear transformation. Recall:

T is injective if and only if ker(T) = {**0**}

T is surjective if and only if im(T) = W.

Exercise: Suppose $T : V \to W$ is injective and surjective, and that V, W are finite dimensional. Show that dim $V = \dim W$.

Exercise: Suppose $T : V \to W$ and dim $V = \dim W$. Show that T injective if and only if T surjective, if and only if T bijective.

Definition: We say $T : V \to W$ is an *isomorphism* if it is bijective. We also say V and W are *isomorphic* vector spaces. In this case, there exists a unique function $T^{-1} : W \to V$ such that $T^{-1}T = \mathbb{1}_V$ and $TT^{-1} = \mathbb{1}_W$.

Proposition: Choose bases α, β . Then $[T^{-1}]^{\alpha}_{\beta} = ([T]^{\beta}_{\alpha})^{-1}$. For $A \in M_{n \times n}(\mathbb{R})$, you know how to calculate A^{-1} from mat223.

Discussion: Towards Change of Basis

Given V, W with bases α, β , we can encode $T : V \to W$ in $[T]^{\beta}_{\alpha}$. **Natural Question:** How does $[\mathbf{x}]^{\alpha}, [T]^{\beta}_{\alpha}$ depend on choice α, β ? Let $T = \mathbb{1} : V \to V$. Then for any basis α , $[\mathbb{1}]^{\alpha}_{\alpha} = [1]$. Given another $\alpha' = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$, we have $[\mathbb{1}]^{\alpha}_{\alpha'} = [\mathbf{v}_1| \cdots |\mathbf{v}_n]^{\alpha}$ Note the special propery: $[\mathbb{1}]^{\alpha}_{\alpha'}[\mathbf{x}]^{\alpha'} = [\mathbb{1}(\mathbf{x})]^{\alpha} = [\mathbf{x}]^{\alpha}$ **Definition:** We call $[\mathbb{1}]^{\alpha}_{\alpha'}$ the *change of basis matrix* from α' to α .

Example: Let
$$\alpha = \{\mathbf{e}_1, \mathbf{e}_2\}$$
 be the standard basis for \mathbb{R}^2 , let $\alpha' = \{(1, 1), (1, -1)\}$ and let $\mathbf{x} = (3, 1) \in \mathbb{R}^2$. Then $[\mathbf{x}]^{\alpha} = \begin{bmatrix} 3\\1 \end{bmatrix} [\mathbf{x}]^{\alpha'} = \begin{bmatrix} 2\\1 \end{bmatrix} [\mathbb{1}]^{\alpha}_{\alpha'} = \begin{bmatrix} 1 & 1\\1 & -1 \end{bmatrix}$ and $[\mathbf{x}]^{\alpha} = [\mathbb{1}]^{\alpha}_{\alpha'}[\mathbf{x}]^{\alpha'}$

Exercise: $V = P_1(\mathbb{R})$, $\alpha = \{1 + x, -x\}$, $\alpha' = \{1 + 2x, 1 + 3x\}$, and $\mathbf{x} = 1 - x$. Compute: $[\mathbf{x}]^{\alpha} \quad [\mathbf{x}]^{\alpha'} \quad [\mathbb{1}]^{\alpha}_{\alpha'} \quad [\mathbb{1}]^{\alpha}_{\alpha'} \cdot [\mathbf{x}]^{\alpha'}$

Discussion: Change of Basis Continued

We can use a similar trick to describe $[T]^{\beta}_{\alpha}$ under change of basis:

$$[T]^{\beta}_{\alpha}[\mathbb{1}]^{\alpha}_{\alpha'} = [T\mathbb{1}]^{\beta}_{\alpha'} = [T]^{\beta}_{\alpha'} \quad \text{ and } \quad [\mathbb{1}]^{\beta'}_{\beta}[T]^{\beta}_{\alpha} = [\mathbb{1}T]^{\beta'}_{\alpha} = [T]^{\beta'}_{\alpha}$$

Exercise: Let $V = W = \mathbb{R}^2$, α the standard basis, $\alpha' = \{(2,0), (1,-1)\}, \text{ and } T : V \to V \text{ be } T(x_1, x_2) = (x_1 + x_2, x_2)$ Compute $[T]^{\alpha}_{\alpha} \quad [\mathbb{1}]^{\alpha'}_{\alpha} \quad [\mathbb{1}]^{\alpha}_{\alpha'} \quad [T]^{\alpha'}_{\alpha}$

We can summarize this by: $[\mathbb{1}]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[\mathbb{1}]^{\alpha'}_{\alpha'} = [T]^{\beta'}_{\alpha'}$

In the case V = W, $\alpha = \beta$, $\alpha' = \beta'$: $[\mathbb{1}]^{\alpha'}_{\alpha}[T]^{\alpha}_{\alpha}[\mathbb{1}]^{\alpha}_{\alpha'} = [T]^{\alpha'}_{\alpha'}$ In particular, taking $T = \mathbb{1}$, we find that $[\mathbb{1}]^{\alpha'}_{\alpha} = ([\mathbb{1}]^{\alpha}_{\alpha'})^{-1}$. **Definition:** $A, B \in M_{n \times n}(\mathbb{R})$ are called *similar* if $A = S^{-1}BS$. **Proposition:** $A, B \in M_{n \times n}(\mathbb{R})$ are similar if and only if there exists $T : V \to V$ and bases α, β for V s.t. $A = [T]^{\alpha}_{\alpha}$ and $B = [T]^{\beta}_{\beta}$.