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Review: Matrices of linear maps, yet again.
Let V ,W be vector spaces and α = {v1, ..., vn}, β = {w1, ...,wm}
be bases. Then the following are equivalent data (in bijection):

I a linear map T : V →W

I a list of vectors yj = T (vj) ∈W for j = 1, ..., n.

I a matrix of numbers aij ∈ R defined by

T (vj) = a1jw1 + ...+ amjwm [T (vj)]β =

a1j...
amj


for i = 1, ...,m and j = 1, ..., n.

Graphically, we write

[T ]βα =
[
T (v1)| · · · |T (vn)

]β
=

a11 · · · a1n
... aij

...
am1 · · · amn

 ∈ Mm×n(R)

The j th column of [T ]βα describes T (vj), the image under T of the
j th vector vj in the basis α, in terms of coordinates defined by β.
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Review: Matrix multiplication works

Given the matrix [T ]βα, we can recover T as:

T (x) = T (
n∑

j=1

xjvj) =
n∑

j=1

xjT (vj) =
n∑

j=1

xj

(
m∑
i=1

aijwi

)

=
m∑
i=1

 n∑
j=1

aijxj

wi

Thus, given [x]α =

x1...
xn

 , we find [T (x)]β = [T ]βα · [x]α

This is the proof that matrix multiplication algorithm works.

This is the conceptual reason why matrices are used to solve linear
equations. (previously, this was a bonus exercise)
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Discussion: Composition of linear maps

Let U,V ,W be vector spaces, S : U → V and T : V →W linear.

We define the composition TS : U →W by TS(y) = T (S(y))

Exercise: Show that TS : U →W is linear.

Example: Let
S : R2 → R3 defined by S(y1, y2) = (y1, y2, 2y2)
T : R3 → R2 defined by T (x1, x2, x3) = (x2, x3).
Then TS : R2 → R2 is calculated directly by

TS(y1, y2) = T (y1, y2, 2y2) = (y2, 2y2)

Exercise: Let
S : P2(R)→ P1(R) defined by S(p(x)) = d

dx p(x)

T : P1(R)→ P3(R) defined by T (p(x)) = x2p(x)

Calculate [S ]αγ , [T ]βα, and [TS ]βγ in terms of the standard bases
γ = {1, x , x2}, α = {1, x} and β = {1, x , x2, x3}.
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Composition and matrix multiplication
Let U,V ,W be vector spaces, S : U → V and T : V →W linear.

Fx bases γ = {u1, ...,up}, α = {v1, ..., vn} and β = {w1, ...,wm},
for U, V and W , respectively. Then we have matrices:

[T ]βα =

a11 · · · a1n
... aij

...
am1 · · · amn

 and [S ]αγ =

b11 · · · b1p
... bjk

...
bn1 · · · bnp


Natural Question: How do we find [TS ]βγ?

TS(uk) = T

 n∑
j=1

bjkvj

 =
n∑

j=1

bjk

(
m∑
i=1

aijwi

)
=

m∑
i=1

 n∑
j=1

aijbjk

wi

Thus [TS(uk)]β =

a11 · · · a1n
... aij

...
am1 · · · amn

 ·
b1k...
bnk

 = [T ]βα[S(uk)]α

and so [TS ]βγ =
[
TS(u1)| · · · |TS(up)

]β
= [T ]βα · [S ]αγ

Exercise: Check this works in the example we just calculated. 5 / 9



Review: Injective, Surjective, Bijective
Let S , S̃ be sets and f : S → S̃ . Recall the following:
Definition: f is injective if knowing f (s) = f (t) implies s = t.

f is surjective if for each s̃ ∈ S̃ there exists s ∈ S with f (s) = s̃.

f is bijective if it is injective and surjective.

Moreover, we showed:

(1) f is surjective if and only if f (S) = S̃ , if and only if:
For each s̃ ∈ S̃ , f −1({s̃}) is non-empty, i.e. f −1({s̃}) 6= Ø.

(2) f is injective if and only if:
For each s̃ ∈ S̃ , f −1({s̃}) is either a single point {s} or empty Ø.

(3) f is bijective if and only:
For each s̃ ∈ S̃ , there exists a unique s ∈ S such that f (s) = s̃.

Exercise: Let f : S → S̃ be bijective. Then there exists a unique
function g : S̃ → S such that g(f (s)) = s and f (g(s̃)) = s̃ for
each s ∈ S and s̃ ∈ S̃ .
We call g the inverse of f , and write g(s) = f −1(s).

Warning: This is not to be confused with f −1({s}). 6 / 9



Discussion: Isomorphisms and Inverses
Let V ,W be finite dimensional vector spaces and T : V →W a
linear transformation. Recall:

T is injective if and only if ker(T ) = {0}
T is surjective if and only if im(T ) = W .

Exercise: Suppose T : V →W is injective and surjective, and
that V ,W are finite dimensional. Show that dimV = dimW .

Exercise: Suppose T : V →W and dimV = dimW . Show that
T injective if and only if T surjective, if and only if T bijective.

Definition: We say T : V →W is an isomorphism if it is bijective.
We also say V and W are isomorphic vector spaces.

In this case, there exists a unique function T−1 : W → V such
that T−1T = 1V and TT−1 = 1W .

Proposition: Choose bases α, β. Then [T−1]αβ = ([T ]βα)−1.

For A ∈ Mn×n(R), you know how to calculate A−1 from mat223.
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Discussion: Towards Change of Basis

Given V ,W with bases α, β, we can encode T : V →W in [T ]βα.

Natural Question: How does [x]α, [T ]βα depend on choice α, β?

Let T = 1 : V → V . Then for any basis α, [1]αα = [1].

Given another α′ = {v1, ..., vn}, we have [1]αα′ =
[
v1| · · · |vn

]α
Note the special propery: [1]αα′ [x]α

′
= [1(x)]α = [x]α

Definition: We call [1]αα′ the change of basis matrix from α′ to α.

Example: Let α = {e1, e2} be the standard basis for R2, let
α′ = {(1, 1), (1,−1)} and let x = (3, 1) ∈ R2.Then

[x]α =

[
3
1

]
[x]α

′
=

[
2
1

]
[1]αα′ =

[
1 1
1 −1

]
and [x]α = [1]αα′ [x]α

′

Exercise: V = P1(R), α = {1 + x ,−x}, α′ = {1 + 2x , 1 + 3x},
and x = 1− x . Compute:

[x]α [x]α
′

[1]αα′ [1]αα′ · [x]α
′
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Discussion: Change of Basis Continued

We can use a similar trick to describe [T ]βα under change of basis:

[T ]βα[1]αα′ = [T1]βα′ = [T ]βα′ and [1]β
′

β [T ]βα = [1T ]β
′

α = [T ]β
′

α

Exercise: Let V = W = R2, α the standard basis,
α′ = {(2, 0), (1,−1)}, and T : V → V be T (x1, x2) = (x1 + x2, x2)
Compute [T ]αα [1]α

′
α [1]αα′ [T ]αα′ [T ]α

′
α

We can summarize this by: [1]β
′

β [T ]βα[1]αα′ = [T ]β
′

α′

In the case V = W , α = β, α′ = β′: [1]α
′

α [T ]αα[1]αα′ = [T ]α
′

α′

In particular, taking T = 1, we find that [1]α
′

α = ([1]αα′)−1.

Definition: A,B ∈ Mn×n(R) are called similar if A = S−1BS .

Proposition: A,B ∈ Mn×n(R) are similar if and only if there exists

T : V → V and bases α, β for V s.t. A = [T ]αα and B = [T ]ββ.
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