MAT224 - LEC5101 - Lecture 5 Conceptual overview and the dimension theorem (rank-nullity)

Dylan Butson

University of Toronto

February 4, 2020

Review of last week 1: Matrices of linear maps

Let V, W be vector spaces and $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}, \beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$ be bases. Then the following are equivalent data (in bijection):

▶ a linear map
$$T: V o W$$

▶ a list of vectors
$$\mathbf{y}_j = T(\mathbf{v}_j) \in W$$
 for $j = 1, ..., n$.

▶ a matrix of numbers
$$a_{ij} \in \mathbb{R}$$
 defined by
 $T(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + ... + a_{mj}\mathbf{w}_m$
for $i = 1, ..., m$ and $j = 1, ..., n$.

Graphically, we write

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} T(\mathbf{v}_1) | & \cdots & |T(\mathbf{v}_n) \end{bmatrix}^{\beta} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{ij} & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in M_{m \times n}(\mathbb{R})$$

The j^{th} column of $[T]^{\beta}_{\alpha}$ describes $T(\mathbf{v}_j)$, the image under T of the j^{th} vector \mathbf{v}_j in the basis α , in terms of coordinates defined by β .

Review of last week 2: Kernel and image

Let
$$T : V \to W$$
. We made the following definitions:

$$im(T) = T(V) = \{T(\mathbf{v}) \in W | \mathbf{v} \in V\}$$

$$ker(T) = T^{-1}(\{\mathbf{0}\}) = \{\mathbf{v} \in V | T(\mathbf{v}) = \mathbf{0}\}$$

Moreover, we learned:

$$\begin{split} & \operatorname{im}(T) = \operatorname{col}([T]_{\alpha}^{\beta}) = \operatorname{Span}(\{T(\mathbf{v}_{1}), ..., T(\mathbf{v}_{n})\}) \\ & \operatorname{ker}(T) = \operatorname{null}([T]_{\alpha}^{\beta}) = \{\mathbf{x} \in V | x_{1}T(\mathbf{v}_{1}) + ... + x_{n}T(\mathbf{v}_{n}) = \mathbf{0}\} \\ & \operatorname{where} [\mathbf{x}]_{\alpha} = [x_{i}]. \text{ i.e. 'the set of linear dependences in } \{T(\mathbf{v}_{i})\}' \end{split}$$

Slightly more generally, we can ask about $T^{-1}({\mathbf{b}})$. We have: **Proposition:** Let $\mathbf{b} \in im(T)$ so that $\mathbf{b} = T(\mathbf{x}_0)$ for $\mathbf{x}_0 \in V$. Then

$$\mathcal{T}^{-1}(\{\mathbf{b}\}) := \{\mathbf{x} \in \mathcal{V} | \mathcal{T}(\mathbf{x}) = \mathbf{b}\} = \{\mathbf{x}_0 + \mathbf{v} | \mathbf{v} \in \ker(\mathcal{T})\}$$

Corollary: There is a bijection between ker(T) and $T^{-1}({\mathbf{b}})$.

What does it mean to solve linear equations? Fix $a_{ij} \in \mathbb{R}$ for i = 1, ..., m and j = 1, ..., n. Question: For each $\mathbf{b} = (b_1, ..., b_m)$, does there exist $\mathbf{x} = (x_1, ..., x_n)$ such that $a_{i1}x_1 + ... + a_{in}x_n = b_i$ for each i = 1, ..., m? If no, then for which \mathbf{b} does there exist such an \mathbf{x} ?

If yes, how many 'different' x are there for fixed b?

Answer: Let $A = [a_{ij}] \in M_{m \times n}(\mathbb{R})$, which defines $T : \mathbb{R}^n \to \mathbb{R}^m$. Then

 $a_{i1}x_1 + ... + a_{in}x_n = b_i$ for each i = 1, ..., m

if and only if

$$A\mathbf{x} = \mathbf{b}$$
, or equivalently $T(\mathbf{x}) = \mathbf{b}$

Thus, we have the following answer:

- There exists **x** solving the equation if and only if $\mathbf{b} \in im(T)$.
- For each fixed b ∈ im(T), the set of solutions is T⁻¹({b}), which we showed is in bijection with ker(T).

Injectivity and surjectivity revisited

Let V, W be vector spaces and $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}, \beta = {\mathbf{w}_1, ..., \mathbf{w}_m}$ be bases, and fix any of the following equivalent pieces of data: (1) $T: V \to W$ (2) { $T(\mathbf{v}_1), ..., T(\mathbf{v}_n)$ } a list of vectors in W (3) $[T]^{\beta}_{\alpha}$ a matrix of numbers $a_{ii} \in \mathbb{R}$ (4) a system of equations $a_{i1}x_1 + ... + a_{in}x_n =?$ for i = 1, ..., mT is surjective if for any $\mathbf{b} \in W$, there is $\mathbf{x} \in V$ with $T(\mathbf{x}) = \mathbf{b}$. In each of the above pictures, we have an equivalent condition: (1) im(T) = W(2) Span($\{T(\mathbf{v}_i)\} = W$ (3) $col([T]^{\beta}_{\alpha}) = W$ (4) for any $\mathbf{b} \in W$, there exists **x** solving $a_{i1}x_1 + \ldots + a_{in}x_n = b_i$ Similarly: T is injective if $T(\mathbf{x}) = T(\mathbf{y})$ imples $\mathbf{x} = \mathbf{y}$. Equivalently,

(1) ker $(T) = \{\mathbf{0}\}$ (2) $\{T(\mathbf{v}_i)\}$ is linearly independent. (3) null $([T]_{\alpha}^{\beta}) = \{\mathbf{0}\}$ (4) For $\mathbf{b} \in \operatorname{im}(T)$, solution to $a_{i1}x_1 + ... + a_{in}x_n = b_i$ is unique 5/9

Towards The Dimension Theorem

We have reduced the question of **existence** and **uniqueness** of solutions to linear equations to understanding the **image** and **kernel** of a linear map $T : V \rightarrow W$.

What can we say about im(T) and ker(T) in general? Let's look at some examples:

(1)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 $(x_1, x_2) \mapsto (x_1, x_2, 0)$
 $\blacktriangleright \dim \ker(T) = 0$, $\dim \operatorname{im}(T) = 2$.
(2) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (x_1, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 1$, $\dim \operatorname{im}(T) = 1$.
(3) $T : \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (0, 0, 0)$
 $\blacktriangleright \dim \ker(T) = 2$, $\dim \operatorname{im}(T) = 0$.
(4) $T : \mathbb{R}^n \to \mathbb{R}^m$ $(x_1, ..., x_n) \mapsto (x_1, ..., x_{n-k}, 0, ..., 0)$
 $\vdash \dim \ker(T) = k$, $\dim \operatorname{im}(T) = n - k$.
Claim: Every linear $T : V \to W$ 'looks like this' wrt some bases.
Corollary: Let $T : V \to W$ linear, with $\dim V = n$. Then
 $\dim V = n = k + (n - k) = \dim \ker(T) + \dim \operatorname{im}(T)$

Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let $T : V \to W$ be a linear map, with V finite dimensional. Then dim $V = \dim \ker(T) + \dim \operatorname{im}(T)$

Let's prove the dimension theorem using the following steps: To fix notation, let's say dim V = n.

- (1) Since ker(T) \subset V, we know $k := \dim \text{ker}(T) \leq \dim V = n$.
- (2) Choose a basis $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ for ker(T), and extend to a basis $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for V.
- (3) Show that $\{T(\mathbf{v}_{k+1}), ..., T(\mathbf{v}_n)\}$ define a basis for im(T). (If it were linearly dependent, find a 'new' element of ker(T))
- (4) Conclude that dim im(T) = n k.
- (5) Use that n = k + (n k) to prove the theorem.

Suppose dim W = m is finite, and extend $\{T(\mathbf{v}_{k+1}), ..., T(\mathbf{v}_n)\}$ to a basis for W.

What is [T] with respect to these bases?

Discussion: Applications of the dimension theorem

- Let $T: V \rightarrow W$ and V and W finite dimensional. Recall:
- T is injective if and only if ker(T) = {0}
- T is surjective if and only if im(T) = W.

Theorem: $\dim V = \dim \ker(T) + \dim \operatorname{im}(T)$

- (a) If dim(ker T) = 0 can you determine if T is injective? What about surjective? (doesn't require the theorem)
- (b) If dim(im T) = dim W can you determine if T is injective? What about surjective? (doesn't require the theorem)
- (c) If dim(im T) = dim V can you determine if T is injective? What about surjective?
- (d) If dim $V = \dim W$ and T is injective, can you determine if T is surjective? What about vice versa?
- (e) If dim $V < \dim W$, can T be injective? Can it be surjective?
- (f) If dim $V > \dim W$, can T be injective? Can it be surjective?

Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:

(1)
$$T: V \to W$$

(2)
$$\{T(\mathbf{v}_1), ..., T(\mathbf{v}_n)\}$$
 a list of vectors in W

- (3) $[T]^{\beta}_{\alpha}$ a matrix of numbers $a_{ij} \in \mathbb{R}$
- (4) a system of equations $a_{i1}x_1 + ... + a_{in}x_n = ?$ for i = 1, ..., m

and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let
$$W = {\mathbf{x} \in \mathbb{R}^n | a_1 x_1 + ... + a_n x_n = 0}$$
. Show dim $W = n - 1$ unless the a_i are all zero.

(2) Let V be n dimensional and S = {v₁, ..., v_n} ⊂ V. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ a linear map with $[T] \in M_{n \times n}(\mathbb{R})$. Show that if [T] has linearly dependent columns, then T is not surjective.