MAT224 - LEC5101 - Lecture 5
 Conceptual overview and the dimension theorem (rank-nullity)

Dylan Butson

University of Toronto
February 4, 2020

Review of last week 1: Matrices of linear maps

Let V, W be vector spaces and $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be bases. Then the following are equivalent data (in bijection):

- a linear map $T: V \rightarrow W$
- a list of vectors $\mathbf{y}_{j}=T\left(\mathbf{v}_{j}\right) \in W$ for $j=1, \ldots, n$.
- a matrix of numbers $a_{i j} \in \mathbb{R}$ defined by

$$
\begin{aligned}
& \quad T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m} \\
& \text { for } i=1, \ldots, m \text { and } j=1, \ldots, n .
\end{aligned}
$$

Graphically, we write

$$
[T]_{\alpha}^{\beta}=\left[\begin{array}{lll}
T\left(\mathbf{v}_{1}\right) \mid & \cdots & \mid T\left(\mathbf{v}_{n}\right)
\end{array}\right]^{\beta}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \in M_{m \times n}(\mathbb{R})
$$

The $j^{\text {th }}$ column of $[T]_{\alpha}^{\beta}$ describes $T\left(\mathbf{v}_{j}\right)$, the image under T of the $j^{\text {th }}$ vector \mathbf{v}_{j} in the basis α, in terms of coordinates defined by β.

Review of last week 2: Kernel and image

Let $T: V \rightarrow W$. We made the following definitions:

$$
\begin{aligned}
& \operatorname{im}(T)=T(V)=\{T(\mathbf{v}) \in W \mid \mathbf{v} \in V\} \\
& \operatorname{ker}(T)=T^{-1}(\{\mathbf{0}\})=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\}
\end{aligned}
$$

Moreover, we learned:
$\operatorname{im}(T)=\operatorname{col}\left([T]_{\alpha}^{\beta}\right)=\operatorname{Span}\left(\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}\right)$
$\operatorname{ker}(T)=\operatorname{null}\left([T]_{\alpha}^{\beta}\right)=\left\{\mathbf{x} \in V \mid x_{1} T\left(\mathbf{v}_{1}\right)+\ldots+x_{n} T\left(\mathbf{v}_{n}\right)=\mathbf{0}\right\}$
where $[\mathbf{x}]_{\alpha}=\left[x_{i}\right]$. i.e. 'the set of linear dependences in $\left\{T\left(\mathbf{v}_{i}\right)\right\}$ '
Slightly more generally, we can ask about $T^{-1}(\{\mathbf{b}\})$. We have:
Proposition: Let $\mathbf{b} \in \operatorname{im}(T)$ so that $\mathbf{b}=T\left(\mathbf{x}_{0}\right)$ for $\mathbf{x}_{0} \in V$. Then

$$
T^{-1}(\{\mathbf{b}\}):=\{\mathbf{x} \in V \mid T(\mathbf{x})=\mathbf{b}\}=\left\{\mathbf{x}_{0}+\mathbf{v} \mid \mathbf{v} \in \operatorname{ker}(T)\right\}
$$

Corollary: There is a bijection between $\operatorname{ker}(T)$ and $T^{-1}(\{\mathbf{b}\})$.

What does it mean to solve linear equations?

Fix $a_{i j} \in \mathbb{R}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.
Question: For each $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$, does there exist $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i} \quad \text { for each } i=1, \ldots, m ?
$$

- If no, then for which \mathbf{b} does there exist such an \mathbf{x} ?
- If yes, how many 'different' \mathbf{x} are there for fixed \mathbf{b} ?

Answer: Let $A=\left[a_{i j}\right] \in M_{m \times n}(\mathbb{R})$, which defines $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then

$$
a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i} \quad \text { for each } i=1, \ldots, m
$$

if and only if

$$
A \mathbf{x}=\mathbf{b} \text {, or equivalently } T(\mathbf{x})=\mathbf{b} .
$$

Thus, we have the following answer:

- There exists \mathbf{x} solving the equation if and only if $\mathbf{b} \in \operatorname{im}(T)$.
- For each fixed $\mathbf{b} \in \operatorname{im}(T)$, the set of solutions is $T^{-1}(\{\mathbf{b}\})$, which we showed is in bijection with $\operatorname{ker}(T)$.

Injectivity and surjectivity revisited

Let V, W be vector spaces and $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ be bases, and fix any of the following equivalent pieces of data:
(1) $T: V \rightarrow W$
(2) $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ a list of vectors in W
(3) $[T]_{\alpha}^{\beta}$ a matrix of numbers $a_{i j} \in \mathbb{R}$
(4) a system of equations $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=$? for $i=1, \ldots, m$
T is surjective if for any $\mathbf{b} \in W$, there is $\mathbf{x} \in V$ with $T(\mathbf{x})=\mathbf{b}$.
In each of the above pictures, we have an equivalent condition:
(1) $\operatorname{im}(T)=W$
(2) $\operatorname{Span}\left(\left\{T\left(\mathbf{v}_{i}\right)\right\}=W\right.$
(3) $\operatorname{col}\left([T]_{\alpha}^{\beta}\right)=W$
(4) for any $\mathbf{b} \in W$, there exists \mathbf{x} solving $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}$

Similarly: T is injective if $T(\mathbf{x})=T(\mathbf{y})$ imples $\mathbf{x}=\mathbf{y}$. Equivalently,
(1) $\operatorname{ker}(T)=\{\mathbf{0}\}$
(2) $\left\{T\left(\mathbf{v}_{i}\right)\right\}$ is linearly independent.
(3) $\operatorname{null}\left([T]_{\alpha}^{\beta}\right)=\{\mathbf{0}\}$
(4) For $\mathbf{b} \in \operatorname{im}(T)$, solution to $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=b_{i}$ is unique

Towards The Dimension Theorem

We have reduced the question of existence and uniqueness of solutions to linear equations to understanding the image and kernel of a linear map $T: V \rightarrow W$.
What can we say about $\operatorname{im}(T)$ and $\operatorname{ker}(T)$ in general? Let's look at some examples:
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 0\right)$
$-\operatorname{dim} \operatorname{ker}(T)=0, \operatorname{dimim}(T)=2$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, 0,0\right)$

- $\operatorname{dim} \operatorname{ker}(T)=1, \operatorname{dimim}(T)=1$.
(3) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}\right) \mapsto(0,0,0)$
- $\operatorname{dim} \operatorname{ker}(T)=2, \operatorname{dim} \operatorname{im}(T)=0$.
(4) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-k}, 0, \ldots, 0\right)$
- $\operatorname{dim} \operatorname{ker}(T)=k, \operatorname{dimim}(T)=n-k$.

Claim: Every linear $T: V \rightarrow W$ 'looks like this' wrt some bases.
Corollary: Let $T: V \rightarrow W$ linear, with $\operatorname{dim} V=n$. Then $\operatorname{dim} V=n=k+(n-k)=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{im}(T)$

Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let $T: V \rightarrow W$ be a linear map, with V finite dimensional. Then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{im}(T)
$$

Let's prove the dimension theorem using the following steps:
To fix notation, let's say $\operatorname{dim} V=n$.
(1) Since $\operatorname{ker}(T) \subset V$, we know $k:=\operatorname{dim} \operatorname{ker}(T) \leq \operatorname{dim} V=n$.
(2) Choose a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for $\operatorname{ker}(T)$, and extend to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for V.
(3) Show that $\left\{T\left(\mathbf{v}_{k+1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ define a basis for $\operatorname{im}(T)$. (If it were linearly dependent, find a 'new' element of $\operatorname{ker}(T)$)
(4) Conclude that $\operatorname{dim} \operatorname{im}(T)=n-k$.
(5) Use that $n=k+(n-k)$ to prove the theorem.

Suppose $\operatorname{dim} W=m$ is finite, and extend $\left\{T\left(\mathbf{v}_{k+1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ to a basis for W.
What is [T] with respect to these bases?

Discussion: Applications of the dimension theorem

Let $T: V \rightarrow W$ and V and W finite dimensional. Recall:
T is injective if and only if $\operatorname{ker}(T)=\{\mathbf{0}\}$
T is surjective if and only if $\operatorname{im}(T)=W$.
Theorem: $\quad \operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+\operatorname{dimim}(T)$
(a) If $\operatorname{dim}(\operatorname{ker} T)=0$ can you determine if T is injective? What about surjective? (doesn't require the theorem)
(b) If $\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} W$ can you determine if T is injective? What about surjective? (doesn't require the theorem)
(c) If $\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} V$ can you determine if T is injective? What about surjective?
(d) If $\operatorname{dim} V=\operatorname{dim} W$ and T is injective, can you determine if T is surjective? What about vice versa?
(e) If $\operatorname{dim} V<\operatorname{dim} W$, can T be injective? Can it be surjective?
(f) If $\operatorname{dim} V>\operatorname{dim} W$, can T be injective? Can it be surjective?

Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:
(1) $T: V \rightarrow W$
(2) $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ a list of vectors in W
(3) $[T]_{\alpha}^{\beta}$ a matrix of numbers $a_{i j} \in \mathbb{R}$
(4) a system of equations $a_{i 1} x_{1}+\ldots+a_{i n} x_{n}=$? for $i=1, \ldots, m$
and for each of these, an interpretation of injective and surjective.
Combine these with the dimension theorem to show:
(1) Let $W=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid a_{1} x_{1}+\ldots+a_{n} x_{n}=0\right\}$. Show $\operatorname{dim} W=n-1$ unless the a_{i} are all zero.
(2) Let V be n dimensional and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subset V$. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If $\operatorname{Span}(S)=V$ then S must be a basis.
(3) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear map with $[T] \in M_{n \times n}(\mathbb{R})$. Show that if $[T$] has linearly dependent columns, then T is not surjective.

