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Review of last week 1: Matrices of linear maps

Let V ,W be vector spaces and α = {v1, ..., vn}, β = {w1, ...,wm}
be bases. Then the following are equivalent data (in bijection):

I a linear map T : V →W

I a list of vectors yj = T (vj) ∈W for j = 1, ..., n.

I a matrix of numbers aij ∈ R defined by
T (vj) = a1jw1 + ...+ amjwm

for i = 1, ...,m and j = 1, ..., n.

Graphically, we write

[T ]βα =
[
T (v1)| · · · |T (vn)

]β
=

a11 · · · a1n
... aij

...
am1 · · · amn

 ∈ Mm×n(R)

The j th column of [T ]βα describes T (vj), the image under T of the
j th vector vj in the basis α, in terms of coordinates defined by β.
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Review of last week 2: Kernel and image

Let T : V →W . We made the following definitions:

im(T ) = T (V ) = {T (v) ∈W |v ∈ V }
ker(T ) = T−1({0}) = {v ∈ V |T (v) = 0}

Moreover, we learned:

im(T ) = col([T ]βα) = Span({T (v1), ...,T (vn)})
ker(T ) = null([T ]βα) = {x ∈ V |x1T (v1) + ...+ xnT (vn) = 0}
where [x]α = [xi ]. i.e. ‘the set of linear dependences in {T (vi )}’

Slightly more generally, we can ask about T−1({b}). We have:

Proposition: Let b ∈ im(T ) so that b = T (x0) for x0 ∈ V . Then

T−1({b}) := {x ∈ V |T (x) = b} = {x0 + v|v ∈ ker(T )}

Corollary: There is a bijection between ker(T ) and T−1({b}).
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What does it mean to solve linear equations?
Fix aij ∈ R for i = 1, ...,m and j = 1, ..., n.

Question: For each b = (b1, ..., bm), does there exist
x = (x1, ..., xn) such that

ai1x1 + ...+ ainxn = bi for each i = 1, ...,m?

I If no, then for which b does there exist such an x?
I If yes, how many ‘different’ x are there for fixed b?

Answer: Let A = [aij ] ∈ Mm×n(R), which defines T : Rn → Rm.
Then

ai1x1 + ...+ ainxn = bi for each i = 1, ...,m

if and only if
Ax = b, or equivalently T (x) = b.

Thus, we have the following answer:

I There exists x solving the equation if and only if b ∈ im(T ).
I For each fixed b ∈ im(T ), the set of solutions is T−1({b}),

which we showed is in bijection with ker(T ).
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Injectivity and surjectivity revisited
Let V ,W be vector spaces and α = {v1, ..., vn}, β = {w1, ...,wm}
be bases, and fix any of the following equivalent pieces of data:

(1) T : V →W
(2) {T (v1), ...,T (vn) } a list of vectors in W

(3) [T ]βα a matrix of numbers aij ∈ R
(4) a system of equations ai1x1 + ...+ ainxn =? for i = 1, ...,m

T is surjective if for any b ∈W , there is x ∈ V with T (x) = b.

In each of the above pictures, we have an equivalent condition:

(1) im(T ) = W
(2) Span({T (vi )} = W

(3) col([T ]βα) = W
(4) for any b ∈W , there exists x solving ai1x1 + ...+ ainxn = bi

Similarly: T is injective if T (x) = T (y) imples x = y. Equivalently,

(1) ker(T ) = {0}
(2) {T (vi )} is linearly independent.

(3) null([T ]βα) = {0}
(4) For b ∈ im(T ), solution to ai1x1 + ...+ ainxn = bi is unique 5 / 9



Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map T : V →W .

What can we say about im(T ) and ker(T ) in general? Let’s look
at some examples:

(1) T : R2 → R3 (x1, x2) 7→ (x1, x2, 0)
I dim ker(T ) = 0 , dim im(T ) = 2 .

(2) T : R2 → R3 (x1, x2) 7→ (x1, 0, 0)
I dim ker(T ) = 1 , dim im(T ) = 1.

(3) T : R2 → R3 (x1, x2) 7→ (0, 0, 0)
I dim ker(T ) = 2 , dim im(T ) = 0.

(4) T : Rn → Rm (x1, ..., xn) 7→ (x1, ..., xn−k , 0, ..., 0)
I dim ker(T ) = k , dim im(T ) = n − k .

Claim: Every linear T : V →W ‘looks like this’ wrt some bases.

Corollary: Let T : V →W linear, with dimV = n. Then
dimV = n = k + (n − k) = dim ker(T ) + dim im(T )
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Discussion: The Dimension Theorem
Theorem: (The Dimension Theorem) Let T : V →W be a linear
map, with V finite dimensional. Then

dimV = dim ker(T ) + dim im(T )

Let’s prove the dimension theorem using the following steps:

To fix notation, let’s say dimV = n.

(1) Since ker(T ) ⊂ V , we know k := dim ker(T ) ≤ dimV = n.

(2) Choose a basis {v1, ..., vk} for ker(T ), and extend to a basis
{v1, ..., vn} for V .

(3) Show that {T (vk+1), ...,T (vn)} define a basis for im(T ).
(If it were linearly dependent, find a ‘new’ element of ker(T ))

(4) Conclude that dim im(T ) = n − k .

(5) Use that n = k + (n − k) to prove the theorem.

Suppose dimW = m is finite, and extend {T (vk+1), ...,T (vn)} to
a basis for W .

What is [T ] with respect to these bases?
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Discussion: Applications of the dimension theorem
Let T : V →W and V and W finite dimensional. Recall:

T is injective if and only if ker(T ) = {0}
T is surjective if and only if im(T ) = W .

Theorem: dimV = dim ker(T ) + dim im(T )

(a) If dim(kerT ) = 0 can you determine if T is injective? What
about surjective? (doesn’t require the theorem)

(b) If dim(imT ) = dimW can you determine if T is injective?
What about surjective? (doesn’t require the theorem)

(c) If dim(imT ) = dimV can you determine if T is injective?
What about surjective?

(d) If dimV = dimW and T is injective, can you determine if T
is surjective? What about vice versa?

(e) If dimV < dimW , can T be injective? Can it be surjective?

(f) If dimV > dimW , can T be injective? Can it be surjective?
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Discussion: Further applications, putting it all together!

Recall we had 4 different pictures of a linear map:

(1) T : V →W

(2) {T (v1), ...,T (vn) } a list of vectors in W

(3) [T ]βα a matrix of numbers aij ∈ R
(4) a system of equations ai1x1 + ...+ ainxn =? for i = 1, ...,m

and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let W = {x ∈ Rn|a1x1 + ...+ anxn = 0}. Show
dimW = n − 1 unless the ai are all zero.

(2) Let V be n dimensional and S = {v1, ..., vn} ⊂ V . Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let T : Rn → Rn a linear map with [T ] ∈ Mn×n(R). Show
that if [T ] has linearly dependent columns, then T is not surjective.
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