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Review of last week 1: Matrices of linear maps

Let V, W be vector spaces and a = {vi,...,vp}, 8 = {w1,...,wp}
be bases. Then the following are equivalent data (in bijection):
> alinearmap T:V - W
» a list of vectors y; = T(v;) € W for j=1,...,n.
» a matrix of numbers a;; € R defined by
T(VJ') = a1 jw1 + ... + amjWm
fori=1,...mandj=1,...,n.
Graphically, we write
a1 -+ din
To =T T = : Momsin(R
[T]a = [ (v1)l | (Vn)] = : ajj : € Mpxn(R)
dmi1 **° dmn

The j™ column of [T]5 describes T(vj), the image under T of the

jt vector v; in the basis «, in terms of coordinates defined by (.
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Review of last week 2: Kernel and image

Let T:V — W. We made the following definitions:
im(T)=T(V)={T(v) e Wlv e V}
ker(T) = T71({0}) = {v € V|T(v) = 0}

Moreover, we learned:
im(T) = coI([T]g) = Span({ T(v1), ..., T(vp)})
ker(T) = null([T]2) = {x € V|x1 T(v1) + ... + X, T(v,) = 0}

where [x], = [x;]. i.e. ‘the set of linear dependences in {T(v;)}’

Slightly more generally, we can ask about T-1({b}). We have:
Proposition: Let b € im(T) so that b = T(xg) for xo € V. Then

T1({b}) :={x € V|T(x) =b} = {xo + v|v € ker(T)}

Corollary: There is a bijection between ker(T) and T-1({b}).
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What does it mean to solve linear equations?
FixajeRfori=1,..,mandj=1,.. n
Question: For each b = (b, ..., by,), does there exist
x = (x1, ..., Xn) such that
ai1X1 + ... + @inxnp = b; foreachi=1,...,m?
» |f no, then for which b does there exist such an x?
» If yes, how many ‘different’ x are there for fixed b?

Answer: Let A = [ajj] € Miyxn(R), which defines T : R” — R™.
Then
aj1x1 + ... + ajpxn = b; foreachi=1,....m
if and only if
Ax = b, or equivalently T(x) = b.

Thus, we have the following answer:

» There exists x solving the equation if and only if b € im(T).

» For each fixed b € im(T), the set of solutions is T~1({b}),

which we showed is in bijection with ker(T).
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Injectivity and surjectivity revisited
Let V, W be vector spaces and o = {v1,...,vp}, 5 = {w1, ..., wp}
be bases, and fix any of the following equivalent pieces of data:
1) T:VoWwW
(2) {T(v1),..., T(vp) } a list of vectors in W
(3) [T]2 a matrix of numbers ajeR
(4) a system of equations aj1x1 + ... + ajpx, =? fori=1,...m
T is surjective if for any b € W, there is x € V with T(x) = b.
In each of the above pictures, we have an equivalent condition:
(1) im(T)=W
(2) Span({T(vi)} =W
(3) col([T]2) = W
(4) for any b € W, there exists x solving aj1x1 + ... + ajnxn = b;
Similarly: T is injective if T(x) = T(y) imples x = y. Equivalently,
(1) ker(T) ={0}
(2) {T(v;)} is linearly independent.
(3) null([T]2) = {0}
(4)

4) For b € im(T), solution to aj1x1 + ... + ajnxy, = b; is unique
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Towards The Dimension Theorem
We have reduced the question of existence and uniqueness of
solutions to linear equations to understanding the image and
kernel of a linear map 7 : V — W.
What can we say about im(T) and ker(T) in general? Let's look
at some examples:
(1) T:R2 = R3 (x1,x)+ (x1,x,0)
» dimker(T) =0, dimim(T)=2.
(2) T:R?2—=R3 (x,x)+ (x1,0,0)
» dimker(T) =1, dimim(T) = 1.
(3) T:R?2—=R3 (x,x)+ (0,0,0)
» dimker(T) =2, dimim(T) =0.
(4) T:R" > R™ (x1,...,%n) = (X1, Xn—k, 0, ..., 0)
» dimker(T) =k, dimim(T) =n— k.
Claim: Every linear T : V — W ‘looks like this' wrt some bases.
Corollary: Let T : V — W linear, with dim V = n. Then
dimV =n=k+ (n—k)=dimker(T) 4 dimim(T)
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Discussion: The Dimension Theorem

Theorem: (The Dimension Theorem) Let T : V — W be a linear

map, with V finite dimensional. Then
dimV =dimker(T) + dimim(T)

Let's prove the dimension theorem using the following steps:
To fix notation, let’s say dim V = n.
(1) Since ker(T) C V, we know k :=dimker(T) < dimV = n.
(2) Choose a basis {vi,...,vk} for ker(T), and extend to a basis
{v1,...,vp} for V.
(3) Show that { T(vk+1),..., T(vn)} define a basis for im(T).
(If it were linearly dependent, find a ‘new’ element of ker(T))
(4) Conclude that dimim(T) = n— k.
(5) Use that n = k + (n — k) to prove the theorem.
Suppose dim W = m is finite, and extend {T(vk41), ..., T(vn)} to
a basis for W.
What is [ T] with respect to these bases?
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Discussion: Applications of the dimension theorem

Let T:V — W and V and W finite dimensional. Recall:

T is injective if and only if ker(T) = {0}

T is surjective if and only if im(T) = W.

Theorem: dim V =dimker(T) + dimim(T)

(a) If dim(ker T) = 0 can you determine if T is injective? What

about surjective? (doesn’t require the theorem)

(b) If dim(im T) = dim W can you determine if T is injective?
What about surjective? (doesn't require the theorem)

(c) If dim(imT) = dim V can you determine if T is injective?
What about surjective?

(d) If dim V = dim W and T is injective, can you determine if T
is surjective? What about vice versa?

(e) If dimV < dim W, can T be injective? Can it be surjective?
(f) If dimV > dim W, can T be injective? Can it be surjective?

8/9



Discussion: Further applications, putting it all together!
Recall we had 4 different pictures of a linear map:
(1) T:V-oW
(2) {T(v1),..., T(vp) } a list of vectors in W
(3) [T]5 a matrix of numbers ajeR
(4) a system of equations aj1x1 + ... + ajpxy =? fori=1,...m
and for each of these, an interpretation of injective and surjective.

Combine these with the dimension theorem to show:

(1) Let W = {x € R"|a1x1 + ... + anx, = 0}. Show

dim W = n — 1 unless the a; are all zero.

(2) Let V be n dimensional and S = {v1,...,v,} C V. Show that:
(a) If S is linearly independent, then S must be a basis.
(b) If Span(S) = V then S must be a basis.

(3) Let T :R" — R" a linear map with [T] € Mpxn(R). Show

that if [T] has linearly dependent columns, then T is not surjective.
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