MAT224 - LEC5101 - Lecture 3 // Basis and dimension

Dylan Butson

University of Toronto

January 21, 2020

Intuitive overview of last week

Definition: Let $S = {x_1, ..., x_n}$ be a (finite) subset of V.

• A vector
$$\mathbf{v} \in V$$
 is a *linear combination* of vectors in S if

$$\mathbf{v} = a_1 \mathbf{x}_1 + ... + a_n \mathbf{x}_n$$
 for some $a_1, ..., a_n \in \mathbb{R}$

▶ Span(S) is the set of all linear combinations of vectors in S: Span(S) = { $\mathbf{v} = a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n \in V | a_1, ..., a_n \in \mathbb{R}$ } ⊂ V

Natural Question: For each set $S = {\mathbf{x}_1, ..., \mathbf{x}_n}$ of *n* vectors in *V*, how can we predict the 'size' of the resulting subspace Span(*S*)? **Example:** Let $V = \mathbb{R}^3$ and $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in V$ vectors in *V*.

- Let S = {x₁}. Then Span(S) is is a 'line', same 'size' as ℝ. Unless: x₁ = 0. (including 0 in S never changes Span(S))
- ▶ Let $S = {\mathbf{x}_1, \mathbf{x}_2}$. Then Span(S) is a plane, same 'size' as \mathbb{R}^2 . Unless: \mathbf{x}_1 or \mathbf{x}_2 is $\mathbf{0}$, or $\mathbf{x}_2 = a\mathbf{x}_1$ for $a \in \mathbb{R}$.

▶ Let
$$S = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3}$$
. Then Span(S) is all of $V = \mathbb{R}^3$.
Unless: Some \mathbf{x}_i is 0, or $\mathbf{x}_2 = a\mathbf{x}_1$, or $\mathbf{x}_3 = b\mathbf{x}_1$, or $\mathbf{x}_3 = c\mathbf{x}_2$,
OR $\mathbf{x}_3 = a_1\mathbf{x}_1 + a_2\mathbf{x}_2$, etc. (which generalize the above).

Goal today: Properly state and answer the question

Partial Answer: For each set $S = {x_1, ..., x_n}$ of *n* vectors in *V*, the resulting subspace Span(*S*) is the 'size' of \mathbb{R}^n . Unless: the vectors of *S* 'satisfy some linear relation'.

Definition: (Recall from last week)

► A *linear dependence* among the vectors of S is an equation:

 $a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n = \mathbf{0}$ for some $a_1, ..., a_n \in \mathbb{R}$

- ► *S* is called *linearly dependent* if it has a linear dependence.
- S is called *linearly independent* if it does not have one.

Slightly Better Answer: Span(S) is the 'size' of \mathbb{R}^n if and only if S is linearly independent.

Span(S) gets 'smaller' for each 'different' linear dependence in S.

But what does 'size' really mean? We want to define *dimension*.

Tentative Definition: A subspace $W \subset V$ has dimension *n* if W = Span(S) for $S = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ linearly independent.

Problem: Need to check this is 'well-defined', independent of S.

Discussion: The notion of Basis

Let V be a vector space and $\mathbf{x}_1, ..., \mathbf{x}_n \in V$.

Definition: A set $S = {x_1, ..., x_n}$ is called a *basis* for V if

(a) V = Span(S)
(a) S is linearly independent.

Examples: The list $1, x, x^2, ..., x^n$ is a basis for $P_n(\mathbb{R})$. The list $\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, 0, ..., 0), ..., \mathbf{e}_n = (0, ..., 0, 1)$ is a basis for \mathbb{R}^n . The set $\{[e_{ij}]\}_{i=1,...,n}^{j=1,...,m}$ is a basis for $M_{n \times m}(\mathbb{R})$.

Which of the following define a basis for \mathbb{R}^3 ? (With proof) (1) $\mathbf{x}_1 = (1, 1, 0), \mathbf{x}_2 = (0, 0, 1)$ (2) $\mathbf{x}_1 = (1, 1, 0), \mathbf{x}_2 = (0, 0, 1), \mathbf{x}_3 = (1, -1, 0)$ (3) $\mathbf{x}_1 = (1, 1, 0), \mathbf{x}_2 = (0, 0, 1), \mathbf{x}_3 = (1, -1, 0), \mathbf{x}_4 = (0, 1, 0)$

Bonus: Let V, \mathbf{x}_i as above, and $S = {\mathbf{x}_1, ..., \mathbf{x}_n}$. Show that S is a basis if and only if the following holds: For every vector $\mathbf{v} \in V$, there **exists** a **unique** choice of scalars $a_1, ..., a_n \in \mathbb{R}$ such that $\mathbf{v} = a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n$

Constructing a Basis

Question: Does there always exist a basis? **Answer:** Yes, almost... **Counterexample:** The vector space $P(\mathbb{R})$ of all polynomials. Thus, we need to assume the following, and we do for this slide: Assumption: There exists a finite set S such that V = Span(S).

Lemma: Let $S = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be linearly independent, and $\mathbf{v} \in V$. $S' = {\mathbf{x}_1, ..., \mathbf{x}_n, \mathbf{v}}$ is linearly dependent if and only if $\mathbf{v} \in \text{Span}(S)$. Equivalently, S' is linearly independent if and only if $\mathbf{v} \notin \text{Span}(S)$. **Example:** Recall our discussion about subspaces of \mathbb{R}^3 .

Theorem: Then there exists a basis for *V*. Moreover, For any $S = {\mathbf{x}_1, ..., \mathbf{x}_k}$ linearly independent, there exists $S' = {\mathbf{x}_1, ..., \mathbf{x}_k, \mathbf{x}_{k+1}, ..., \mathbf{x}_n}$ such that S' is a basis for *V*. For any $S = {\mathbf{x}_1, ..., \mathbf{x}_m}$ such that Span(S) = V, there exists $S' = {\mathbf{x}_{i_1}, ..., \mathbf{x}_{i_n}} \subset S$ such that S' is a basis for *V*. Warning: This used the above assumption.

Discussion: Constructing a basis

Recall
$$P_2(\mathbb{R}) = \{a + bx + cx^2 | a, b, c \in \mathbb{R}\}.$$

True or False: (with proof!)

1. If
$$p(x), q(x), r(x) \in P_2(\mathbb{R})$$
 such that
 $p(x) + q(x) = q(x) + r(x)$, then the list $p(x), q(x), r(x)$
cannot be a basis for $P_2(\mathbb{R})$.

2. The list
$$1 + 2x - x^2$$
, $1 + x + x^2$ is a basis for the subspace $W = \{a + bx + cx^2 \in P_2(\mathbb{R}) \mid -3a + 2b + c = 0\}.$

Let $S = {x_1, x_2, x_3}$ a list of vectors in V, such that V = Span(S), and the list ${x_1, x_2}$ is a basis for V. True or False: (with proof!)

- 1. The list $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ must be linearly dependent.
- Suppose the list x₁, x₃ is also basis for V. Then it follows that the list x₂, x₃ is a basis for V.

Dimension

Lemma: Let S be a spanning set for V with m elements. Then any linearly independent set S' in V has at most m elements. **Example:** We know $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ spans \mathbb{R}^3 . Any linearly independent set of vectors in \mathbb{R}^3 has at most 3 elements.

Key Corollary: Let $S_1 = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and $S_2 = {\mathbf{y}_1, ..., \mathbf{y}_m}$ both be a basis of V. Then n = m, i.e. the lists are the same length. **Definition:** The *dimension* of V is the number of elements in some (or equivalently any) basis for V.

For V satisfying our assumption, this number is finite by previous theorem. Any V not satisfying this is called *infinite dimensional*.

Examples: dim $\mathbb{R}^n = n$, dim $P_n(\mathbb{R}) = n + 1$, dim $M_{m \times n}(\mathbb{R}) = mn$.

Theorem: Let U be a subspace of a finite dimensional V. Then dim $U \leq \dim V$, with equality if and only if U = V.

Discussion: Dimension

What dimension are the following subspaces of \mathbb{R}^3 : (with proof) (1) $W = \{ \mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 | x_3 = 0 \}$ (2) $W = \text{Span}(\{(1, 0, 0), (1, 1, 0), (1, -1, 0)\})$

Let $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \mathbf{x_4} \in V$ and $U = \text{Span}\{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \mathbf{x_4}\}$. Suppose that $\mathbf{x_3} = \mathbf{x_1} - \mathbf{x_2}$ and $\mathbf{x_4} = 2\mathbf{x_1} + 3\mathbf{x_2} - \mathbf{x_3}$. (3) What are the possible dimensions of U? (4) Suppose dim U = 2. Must $\{\mathbf{x_3}, \mathbf{x_4}\}$ be linearly independent?

Bonus: Let W_1, W_2 be subspaces of V, and recall

 $W_1 + W_2 = \{ \mathbf{w} + \mathbf{x} \mid \mathbf{w} \in W_1 \text{ and } \mathbf{x} \in W_2 \}$

Show that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.