MAT224 - LEC5101 - Lecture 3 // Basis and dimension

Dylan Butson

University of Toronto

January 21, 2020

Intuitive overview of last week

Definition: Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a (finite) subset of V.

- A vector $\mathbf{v} \in V$ is a linear combination of vectors in S if

$$
\mathbf{v}=a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n} \quad \text { for some } \quad a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

- $\operatorname{Span}(S)$ is the set of all linear combinations of vectors in S :
$\operatorname{Span}(S)=\left\{\mathbf{v}=a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n} \in V \mid a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} \subset V$
Natural Question: For each set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ of n vectors in V, how can we predict the 'size' of the resulting subspace $\operatorname{Span}(S)$?
Example: Let $V=\mathbb{R}^{3}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \in V$ vectors in V.
- Let $S=\left\{\mathbf{x}_{1}\right\}$. Then $\operatorname{Span}(S)$ is is a 'line', same 'size' as \mathbb{R}. Unless: $\mathbf{x}_{1}=\mathbf{0}$. (including $\mathbf{0}$ in S never changes $\operatorname{Span}(S)$)
- Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$. Then $\operatorname{Span}(S)$ is a plane, same 'size' as \mathbb{R}^{2}. Unless: \mathbf{x}_{1} or \mathbf{x}_{2} is $\mathbf{0}$, or $\mathbf{x}_{2}=a \mathbf{x}_{1}$ for $a \in \mathbb{R}$.
- Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$. Then $\operatorname{Span}(S)$ is all of $V=\mathbb{R}^{3}$.

Unless: Some \mathbf{x}_{i} is 0 , or $\mathbf{x}_{2}=a \mathbf{x}_{1}$, or $\mathbf{x}_{3}=b \mathbf{x}_{1}$, or $\mathbf{x}_{3}=c \mathbf{x}_{2}$, ${ }^{*} O R^{*} \mathbf{x}_{3}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}$, etc. (which generalize the above).

Goal today: Properly state and answer the question

Partial Answer: For each set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ of n vectors in V, the resulting subspace $\operatorname{Span}(S)$ is the 'size' of \mathbb{R}^{n}.
Unless: the vectors of S 'satisfy some linear relation'.
Definition: (Recall from last week)

- A linear dependence among the vectors of S is an equation:

$$
a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n}=\mathbf{0} \quad \text { for some } \quad a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

- S is called linearly dependent if it has a linear dependence.
- S is called linearly independent if it does not have one.

Slightly Better Answer: $\operatorname{Span}(S)$ is the 'size' of \mathbb{R}^{n} if and only if S is linearly independent.
Span (S) gets 'smaller' for each 'different' linear dependence in S.
But what does 'size' really mean? We want to define dimension.
Tentative Definition: A subspace $W \subset V$ has dimension n if $W=\operatorname{Span}(S)$ for $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ linearly independent.
Problem: Need to check this is 'well-defined', independent of S.

Discussion: The notion of Basis

Let V be a vector space and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in V$.
Definition: A set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is called a basis for V if
(a) $V=\operatorname{Span}(S)$
(a) S is linearly independent.

Examples: The list $1, x, x^{2}, \ldots, x^{n}$ is a basis for $P_{n}(\mathbb{R})$.
The list $\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0, \ldots, 0,1)$ is a basis for \mathbb{R}^{n}.
The set $\left\{\left[e_{i j}\right]\right\}_{i=1, \ldots, n}^{j=1, \ldots, m}$ is a basis for $M_{n \times m}(\mathbb{R})$.
Which of the following define a basis for \mathbb{R}^{3} ? (With proof)
(1) $\mathbf{x}_{1}=(1,1,0), \mathbf{x}_{2}=(0,0,1)$
(2) $\mathbf{x}_{1}=(1,1,0), \mathbf{x}_{2}=(0,0,1), \mathrm{x}_{3}=(1,-1,0)$
(3) $\mathbf{x}_{1}=(1,1,0), \mathbf{x}_{2}=(0,0,1), \mathbf{x}_{3}=(1,-1,0), \mathrm{x}_{4}=(0,1,0)$

Bonus: Let V, \mathbf{x}_{i} as above, and $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$.
Show that S is a basis if and only if the following holds:
For every vector $\mathbf{v} \in V$, there exists a unique choice of scalars $a_{1}, \ldots, a_{n} \in \mathbb{R} \quad$ such that $\quad \mathbf{v}=a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n}$

Constructing a Basis

Question: Does there always exist a basis? Answer: Yes, almost...
Counterexample: The vector space $P(\mathbb{R})$ of all polynomials.
Thus, we need to assume the following, and we do for this slide:
Assumption: There exists a finite set S such that $V=\operatorname{Span}(S)$.
Lemma: Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be linearly independent, and $\mathbf{v} \in V$.
$S^{\prime}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{v}\right\}$ is linearly dependent if and only if $\mathbf{v} \in \operatorname{Span}(S)$.
Equivalently, S^{\prime} is linearly independent if and only if $\mathbf{v} \notin \operatorname{Span}(S)$.
Example: Recall our discussion about subspaces of \mathbb{R}^{3}.
Theorem: Then there exists a basis for V. Moreover,
For any $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ linearly independent, there exists
$S^{\prime}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_{n}\right\}$ such that S^{\prime} is a basis for V.
For any $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}$ such that $\operatorname{Span}(S)=V$, there exists
$S^{\prime}=\left\{\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{n}}\right\} \subset S$ such that S^{\prime} is a basis for V.
Warning: This used the above assumption.

Discussion: Constructing a basis

Recall $P_{2}(\mathbb{R})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$.
True or False: (with proof!)

1. If $p(x), q(x), r(x) \in P_{2}(\mathbb{R})$ such that $p(x)+q(x)=q(x)+r(x)$, then the list $p(x), q(x), r(x)$ cannot be a basis for $P_{2}(\mathbb{R})$.
2. The list $1+2 x-x^{2}, 1+x+x^{2}$ is a basis for the subspace $W=\left\{a+b x+c x^{2} \in P_{2}(\mathbb{R}) \mid-3 a+2 b+c=0\right\}$.

Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ a list of vectors in V, such that $V=\operatorname{Span}(S)$, and the list $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis for V.
True or False: (with proof!)

1. The list $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ must be linearly dependent.
2. Suppose the list $\mathbf{x}_{1}, \mathbf{x}_{3}$ is also basis for V. Then it follows that the list $\mathbf{x}_{2}, \mathbf{x}_{3}$ is a basis for V.

Dimension

Lemma: Let S be a spanning set for V with m elements.
Then any linearly independent set S^{\prime} in V has at most m elements.
Example: We know $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ spans \mathbb{R}^{3}. Any linearly independent set of vectors in \mathbb{R}^{3} has at most 3 elements.

Key Corollary: Let $S_{1}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ and $S_{2}=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right\}$ both be a basis of V. Then $n=m$, i.e. the lists are the same length.
Definition: The dimension of V is the number of elements in some (or equivalently any) basis for V.
For V satisfying our assumption, this number is finite by previous theorem. Any V not satisfying this is called infinite dimensional.
Examples: $\operatorname{dim} \mathbb{R}^{n}=n, \operatorname{dim} P_{n}(\mathbb{R})=n+1, \operatorname{dim} M_{m \times n}(\mathbb{R})=m n$.
Theorem: Let U be a subspace of a finite dimensional V. Then $\operatorname{dim} U \leq \operatorname{dim} V$, with equality if and only if $U=V$.

Discussion: Dimension

What dimension are the following subspaces of \mathbb{R}^{3} : (with proof)
(1) $W=\left\{\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0\right\}$
(2) $W=\operatorname{Span}(\{(1,0,0),(1,1,0),(1,-1,0)\})$

Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{\mathbf{4}} \in V$ and $U=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}$.
Suppose that $\mathbf{x}_{3}=\mathbf{x}_{1}-\mathrm{x}_{2}$ and $\mathrm{x}_{4}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}-\mathrm{x}_{3}$.
(3) What are the possible dimensions of U ?
(4) Suppose $\operatorname{dim} U=2$. Must $\left\{\mathbf{x}_{3}, \mathrm{x}_{4}\right\}$ be linearly independent?

Bonus: Let W_{1}, W_{2} be subspaces of V, and recall

$$
W_{1}+W_{2}=\left\{\mathbf{w}+\mathbf{x} \mid \mathbf{w} \in W_{1} \text { and } \mathbf{x} \in W_{2}\right\}
$$

Show that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

