1 Addendum

1.1 Question from 'Discussion: Constructing a Basis'

I got a bit confused in class solving a system of linear equations at the end of the following problem. Here, I repeat the main part of the proof as in class, and then solve the relevant system as required.

Problem: Recall $P_{2}(\mathbb{R})=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}$.
True or false: (with proof)
The list $1+2 x-x^{2}, 1+x+x^{2}$ is a basis for the subspace

$$
W=\left\{a+b x+c x^{2} \in P_{2}(\mathbb{R}) \mid-3 a+2 b+c=0\right\}
$$

Solution: The statement is true.
Let $S=\left\{1+2 x-x^{2}, 1+x+x^{2}\right\}$ be the list above. To begin, note that the elements of the list are easily checked to be linearly independent. Thus, it remains to check that $\operatorname{Span}(S)=W$.

Now, one can check that both polynomials satisfy the condition that $-3 a+$ $2 b+c=0$, so that S is a subset of W. Then, since W is a subspace, we can apply the proposition from lecture 2 to conclude that $\operatorname{Span}(S) \subset W$.

It remains to show $W \subset \operatorname{Span}(S)$. To do this, we (as always) take an arbitrary element $\mathbf{w} \in W$ and we need to show that $\mathbf{w} \in \operatorname{Span}(S)$.

By definition, we have $\mathbf{w}=a+b x+c x^{2}$ for some $a, b, c \in \mathbb{R}$, such that $-3 a+2 b+c=0$. On the other hand, basically by definition we have

$$
\operatorname{Span}(S)=\left\{(s+t)+(2 s+t) x+(-s+t) x^{2} \mid s, t \in \mathbb{R}\right\} .
$$

Thus, we must check that for any fixed $a, b, c \in \mathbb{R}$ as above, we can find $s, t \in \mathbb{R}$ so that

$$
a+b x+c x^{2}=(s+t)+(2 s+t) x+(-s+t) x^{2}
$$

Equivalently, we need to solve the system of linear equations

$$
s+t=a \quad 2 s+t=b \quad-s+t=c
$$

These seem overdetermined, were it not for the condition on a, b, c above. As we show below, after accounting for it, there does exist a solution.

Adding, or subtracting, the first and third equations, we arrive at the solutions

$$
t=(a+c) / 2 \quad s=(a-c) / 2
$$

respectively. These succesfully solve the first and third equation, so we just need to check they solve the second. Plugging in, we find:

$$
2 s+t=(3 a-c) / 2=b
$$

as desired, where we used the constraint $-3 a+2 b+c=0$ in the second equality. Thus, the system admits a solution.

In summary, we've shown that $\mathbf{w} \in \operatorname{Span}(S)$, so that indeed $W \subset \operatorname{Span}(S)$, as desired. This completes the proof that $W=\operatorname{Span}(S)$, and that S is a basis for W.

1.2 An alternative conceptual solution

A more conceptual way to preform the final step, checking that $W=\operatorname{Span}(S)$, is the following: (Unfortunately, we couldn't use this method at the time, because we hadn't learned about dimension until later in class.)

The previously established facts show that $\operatorname{Span}(S)$ is two dimensional, and that $\operatorname{Span}(S) \subset W$. Further, one can independently check that W is also two dimensional, as the solution set to a single linear equation in a three dimensional space (for example, this will follow immidiately from the dimension theorem, which we'll prove next class). Then, a proposition from the section on dimension in this lecture says that $\operatorname{dim}(\operatorname{Span}(S)) \leq \operatorname{dim}(W)$, with equality if and only if $\operatorname{Span}(S)=W$. Since we have observed that we have this equality of dimensions, it follows that $\operatorname{Span}(S)=W$.

1.3 Solutions to questions from 'Discussion: Dimension'

Note: These aren't full solutions, just answers without proof for your reference. If you want a full explanation, come by my office hours, Tuesday $3-5$ in the Huron lounge!
(1) It has dimension 2 .
(2) It has dimension 2.
(3) It has possible dimensions 0,1 , or 2 .
(4) Yes, they must be linearly independent.

