MAT224 - LEC5101 - Lecture 2 Linear combinations, span, and independence

Dylan Butson

University of Toronto

January 14, 2020

Subspaces review

Definition: A *subspace* of a vector space V is a subset W of V that is itself a vector space with the same operations of vector addition and scalar multiplication as in V.

Note that for $\mathbf{w}, \mathbf{x} \in W$, we only know $\mathbf{w} + \mathbf{x}, c\mathbf{w} \in V$ in general. Thus, the definition of subspace implicitly requires that W satisfies:

- closed under addition: for any $\mathbf{w}, \mathbf{x} \in W$, $\mathbf{w} + \mathbf{x} \in W$.
- closed under scalar mult.: for any $\mathbf{w} \in W$, $c \in \mathbb{R}$, $c\mathbf{w} \in W$.

Equivalently, we can combine these into a single criterion:

► closed under both: for each
$$\mathbf{x}, \mathbf{w} \in W$$
 and $c \in \mathbb{R}$,
 $c\mathbf{w} + \mathbf{x} \in W$.

Proposition: A subset W of V is a subspace if and only if it is non-empty and closed under both addition and scalar mult.

Example:

▶
$$W_1 = \{(x_1, x_2) \in \mathbb{R}^2 | x_2 = 2x_1\} \subset \mathbb{R}^2 = V$$
 is a subspace.
▶ $W_2 = \{(x_1, x_2) \in \mathbb{R}^2 | x_2 = x_1^2\} \subset \mathbb{R}^2 = V$ is not.

Discussion: Properties and (non) examples of subspaces

Let $A \in M_{m \times n}(\mathbb{R})$. Show that

- (1) the null space $\operatorname{null}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n ; and
- (2) the column space $\operatorname{col}(A) = \{A\mathbf{x} \in \mathbb{R}^m \mid \mathbf{x} \in \mathbb{R}^n\}$ is a subspace of \mathbb{R}^m .

Which of the following subsets W of $M_{n \times n}(\mathbb{R})$ are subspaces of $M_{n \times n}(\mathbb{R})$?

(3)
$$W = \{A \in M_{n \times n}(\mathbb{R}) \mid A \text{ is invertible}\}$$

(4) $W = \{A \in M_{n \times n}(\mathbb{R}) \mid \text{ the last column of } A \text{ is zero}\}$
(5) $W = \{A \in M_{n \times n}(\mathbb{R}) \mid A^2 = \mathbf{0}\}$

(6) Give examples of subsets W ⊂ ℝ² that are closed under addition but not scalar multiplication, and vice versa.

Linear Combination and Span

Definition: Let $S = {x_1, ..., x_n}$ be a (finite) subset of V.

- ► A vector $\mathbf{v} \in V$ is a *linear combination* of vectors in S if $\mathbf{v} = a_1 \mathbf{x}_1 + ... + a_n \mathbf{x}_n$ for some $a_1, ..., a_n \in \mathbb{R}$.
- Span(S) is the set of all linear combinations of vectors in S: Span(S) = { $\mathbf{v} = a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n \in V | a_1, ..., a_n \in \mathbb{R}$ } $\subset V$
- If Span(S) = W we say S spans the subspace W.

Examples:

Let $\mathbf{x} = (1,0) \in \mathbb{R}^2$. Then Span $(\mathbf{x}) = \{\mathbf{v} = (v_1,0) \in \mathbb{R}^2\} = \{\mathbf{v} = (v_1,v_2) \in \mathbb{R}^2 | v_2 = 0\}$ Let $\mathbf{x}_1 = (1,2) \in \mathbb{R}^2$. Then Span $(\mathbf{x}_1) = \{\mathbf{v} = (v_1, 2v_1) \in \mathbb{R}^2\} = \{\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2 | v_2 = 2v_1\}$ Let $\mathbf{x}_2 = (2,4) \in \mathbb{R}^2$. Then Span $(\mathbf{x}_2) = \text{Span}(\mathbf{x}_1) = \text{Span}(\{\mathbf{x}_1, \mathbf{x}_2\})$.

Proposition:

(a) The set $\text{Span}(S) \subset V$ defines a subspace of V.

(b) If $W \subset V$ is a subspace of V and $S \subset W$, then $\text{Span}(S) \subset W$.

Discussion: Examples of Spans and the Sum Operation

Let
$$\mathbf{v} = (1, 0, 0), \mathbf{w} = (0, 1, 2), \mathbf{x} = (1, 1, 2) \in \mathbb{R}^3.$$

(1) Let $S = {\mathbf{v}, \mathbf{w}}$, describe Span(S) as a subset of \mathbb{R}^3 as above.

(2) Let
$$S = {\mathbf{v}, \mathbf{x}}$$
, and do the same.

(3) How do these compare with Span({v, w, x})?

Let
$$S = \{1, x - 2x^2, 3x^2, 1 + 4x^2\} \subset P_2(\mathbb{R})$$

(4) Show $\{1, x, x^2\} \subseteq \text{Span}(S) \subseteq P_2(\mathbb{R})$.
(5) Deduce that $P_2(\mathbb{R}) \subseteq \text{Span}(S)$ and thus $\text{Span}(S) = P_2(\mathbb{R})$.

Bonus: Let W and X be subspaces of V and define $W + X = \{\mathbf{v} = \mathbf{w} + \mathbf{x} \in V | \mathbf{w} \in W \text{ and } \mathbf{x} \in X\} \subset V$

(a) Show that W + X is a subspace of V.
(b) If W = Span({w₁, ..., w_n}) and X = Span({x₁, ..., x_m}) then W + X = Span({w₁, ..., w_n, x₁, ..., x_m})

Linear (In)Dependence

Definition: Let $S = {x_1, ..., x_n}$ be a subset of V.

▶ A *linear dependence* among the vectors of S is an equation:

 $a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n = \mathbf{0}$ for some $a_1, ..., a_n \in \mathbb{R}$

It is called *trivial* if $a_1 = ... = a_n = 0$ and *non trivial* otherwise.

S is called *linearly dependent* if it has a non trivial linear dependence.

Example: Let $\mathbf{v} = (1, 0, 0), \mathbf{w} = (0, 1, 2), \mathbf{x} = (1, 1, 2) \in \mathbb{R}^3$.

• The set $S = \{v, w, x\}$ has a non trivial linear dependence:

$$1\mathbf{v} + 1\mathbf{w} + (-1)\mathbf{x} = \mathbf{0}$$

Definition: *S* is called *linearly independent* if it has no non trivial linear dependence.

Equivalently, S called is linearly independent if: for any equation

$$a_1\mathbf{x}_1 + ... + a_n\mathbf{x}_n = \mathbf{0}$$
 for some $a_1, ..., a_n \in \mathbb{R}$

we must have $a_1 = \ldots = a_n = 0$.

Example: The set $S_1 = \{\mathbf{v}, \mathbf{w}\}$ is linearly independent.

Discussion: Examples of Linear (In)dependence

(1) Let
$$S = \{1 + x, x + x^2, 1 - x^2\} \subset P_2(\mathbb{R})$$
.
Prove that S is linearly dependent.

(2) Let
$$S = {\mathbf{x}_1, ..., \mathbf{x}_n} \subset V$$
 and $\mathbf{v} \in \text{Span}(S)$.
Prove that $S' = {\mathbf{x}_1, ..., \mathbf{x}_n, \mathbf{v}}$ is linearly dependent.

(3) Let
$$e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1) \in \mathbb{R}^3$$
.
Prove that $S = \{e_1, e_2, e_3\}$ is linearly independent.

(4) Let
$$S = \{1 + x, x + x^2, 1 + x^2\} \subset P_2(\mathbb{R})$$
.
Prove that S is linearly independent.

Bonus: Let $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ and $S_1 = \{\mathbf{x}_2, \mathbf{x}_3\}, S_2 = \{\mathbf{x}_1, \mathbf{x}_3\}$, and $S_3 = \{\mathbf{x}_1, \mathbf{x}_2\}$. If S_1, S_2, S_3 are each linearly independent, does this imply S is linearly independent? Prove or give counterexample.