MAT224 - LEC5101 - Lecture 2
 Linear combinations, span, and independence

Dylan Butson

University of Toronto

January 14, 2020

Subspaces review

Definition: A subspace of a vector space V is a subset W of V that is itself a vector space with the same operations of vector addition and scalar multiplication as in V.
Note that for $\mathbf{w}, \mathbf{x} \in W$, we only know $\mathbf{w}+\mathbf{x}, \mathbf{c} \mathbf{w} \in V$ in general.
Thus, the definition of subspace implicitly requires that W satisfies:

- closed under addition: for any $\mathbf{w}, \mathbf{x} \in W, \mathbf{w}+\mathbf{x} \in W$.
- closed under scalar mult.: for any $\mathbf{w} \in W, c \in \mathbb{R}, c \mathbf{w} \in W$.

Equivalently, we can combine these into a single criterion:

- closed under both: for each $\mathbf{x}, \mathbf{w} \in W$ and $c \in \mathbb{R}$, $\mathbf{c} \mathbf{w}+\mathbf{x} \in W$.
Proposition: A subset W of V is a subspace if and only if it is non-empty and closed under both addition and scalar mult.

Example:

- $W_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}=2 x_{1}\right\} \subset \mathbb{R}^{2}=V$ is a subspace.
- $W_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{2}=x_{1}^{2}\right\} \subset \mathbb{R}^{2}=V$ is not.

Discussion: Properties and (non) examples of subspaces

Let $A \in M_{m \times n}(\mathbb{R})$. Show that
(1) the null space $\operatorname{null}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}$ is a subspace of \mathbb{R}^{n}; and
(2) the column space $\operatorname{col}(A)=\left\{A \mathbf{x} \in \mathbb{R}^{m} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}$ - is a subspace of \mathbb{R}^{m}.

Which of the following subsets W of $M_{n \times n}(\mathbb{R})$ are subspaces of $M_{n \times n}(\mathbb{R})$?
(3) $W=\left\{A \in M_{n \times n}(\mathbb{R}) \mid A\right.$ is invertible $\}$
(4) $W=\left\{A \in M_{n \times n}(\mathbb{R}) \mid\right.$ the last column of A is zero $\}$
(5) $W=\left\{A \in M_{n \times n}(\mathbb{R}) \mid A^{2}=\mathbf{0}\right\}$
(6) Give examples of subsets $W \subset \mathbb{R}^{2}$ that are closed under addition but not scalar multiplication, and vice versa.

Linear Combination and Span

Definition: Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a (finite) subset of V.

- A vector $\mathbf{v} \in V$ is a linear combination of vectors in S if

$$
\mathbf{v}=a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n} \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

- $\operatorname{Span}(S)$ is the set of all linear combinations of vectors in S :

$$
\operatorname{Span}(S)=\left\{\mathbf{v}=a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n} \in V \mid a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} \subset V
$$

- If $\operatorname{Span}(S)=W$ we say S spans the subspace W.

Examples:

Let $\mathbf{x}=(1,0) \in \mathbb{R}^{2}$. Then
$\operatorname{Span}(\mathbf{x})=\left\{\mathbf{v}=\left(v_{1}, 0\right) \in \mathbb{R}^{2}\right\}=\left\{\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{2}=0\right\}$
Let $\mathbf{x}_{1}=(1,2) \in \mathbb{R}^{2}$. Then
$\operatorname{Span}\left(\mathbf{x}_{1}\right)=\left\{\mathbf{v}=\left(v_{1}, 2 v_{1}\right) \in \mathbb{R}^{2}\right\}=\left\{\mathbf{v}=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \mid v_{2}=2 v_{1}\right\}$
Let $\mathbf{x}_{2}=(2,4) \in \mathbb{R}^{2}$. Then
$\operatorname{Span}\left(\mathbf{x}_{2}\right)=\operatorname{Span}\left(\mathbf{x}_{1}\right)=\operatorname{Span}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right)$.

Proposition:

(a) The set $\operatorname{Span}(S) \subset V$ defines a subspace of V.
(b) If $W \subset V$ is a subspace of V and $S \subset W$, then $\operatorname{Span}(S) \subset W$.

Discussion: Examples of Spans and the Sum Operation

Let $\mathbf{v}=(1,0,0), \mathbf{w}=(0,1,2), \mathbf{x}=(1,1,2) \in \mathbb{R}^{3}$.
(1) Let $S=\{\mathbf{v}, \mathbf{w}\}$, describe $\operatorname{Span}(S)$ as a subset of \mathbb{R}^{3} as above.
(2) Let $S=\{\mathbf{v}, \mathbf{x}\}$, and do the same.
(3) How do these compare with $\operatorname{Span}(\{\mathbf{v}, \mathbf{w}, \mathbf{x}\})$?

Let $S=\left\{1, x-2 x^{2}, 3 x^{2}, 1+4 x^{2}\right\} \subset P_{2}(\mathbb{R})$
(4) Show $\left\{1, x, x^{2}\right\} \subseteq \operatorname{Span}(S) \subseteq P_{2}(\mathbb{R})$.
(5) Deduce that $P_{2}(\mathbb{R}) \subseteq \operatorname{Span}(S)$ and thus $\operatorname{Span}(S)=P_{2}(\mathbb{R})$.

Bonus: Let W and X be subspaces of V and define $W+X=\{\mathbf{v}=\mathbf{w}+\mathbf{x} \in V \mid \mathbf{w} \in W$ and $\mathbf{x} \in X\} \subset V$
(a) Show that $W+X$ is a subspace of V.
(b) If $W=\operatorname{Span}\left(\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}\right)$ and $X=\operatorname{Span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}\right)$ then

$$
W+X=\operatorname{Span}\left(\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\}\right)
$$

Linear (In)Dependence

Definition: Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a subset of V.

- A linear dependence among the vectors of S is an equation:

$$
a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n}=\mathbf{0} \quad \text { for some } \quad a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

It is called trivial if $a_{1}=\ldots=a_{n}=0$ and non trivial otherwise.

- S is called linearly dependent if it has a non trivial linear dependence.
Example: Let $\mathbf{v}=(1,0,0), \mathbf{w}=(0,1,2), \mathbf{x}=(1,1,2) \in \mathbb{R}^{3}$.
- The set $S=\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ has a non trivial linear dependence:

$$
1 \mathbf{v}+1 \mathbf{w}+(-1) \mathbf{x}=\mathbf{0}
$$

Definition: S is called linearly independent if it has no non trivial linear dependence.
Equivalently, S called is linearly independent if: for any equation

$$
a_{1} \mathbf{x}_{1}+\ldots+a_{n} \mathbf{x}_{n}=\mathbf{0} \quad \text { for some } \quad a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

we must have $a_{1}=\ldots=a_{n}=0$.
Example: The set $S_{1}=\{\mathbf{v}, \mathbf{w}\}$ is linearly independent.

Discussion: Examples of Linear (In)dependence

(1) Let $S=\left\{1+x, x+x^{2}, 1-x^{2}\right\} \subset P_{2}(\mathbb{R})$. Prove that S is linearly dependent.
(2) Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subset V$ and $\mathbf{v} \in \operatorname{Span}(S)$.

Prove that $S^{\prime}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{v}\right\}$ is linearly dependent.
(3) Let $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1) \in \mathbb{R}^{3}$.

Prove that $S=\left\{e_{1}, e_{2}, e_{3}\right\}$ is linearly independent.
(4) Let $S=\left\{1+x, x+x^{2}, 1+x^{2}\right\} \subset P_{2}(\mathbb{R})$.

Prove that S is linearly independent.
Bonus: Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ and $S_{1}=\left\{\mathbf{x}_{2}, \mathbf{x}_{3}\right\}, S_{2}=\left\{\mathbf{x}_{1}, \mathbf{x}_{3}\right\}$, and $S_{3}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$.
If S_{1}, S_{2}, S_{3} are each linearly independent, does this imply S is linearly independent? Prove or give counterexample.

