1 Review of basics

Fix an algebraically closed field F, that is, a field F such that for any polynomial $p(\lambda) \in P_{n}(F)$ of degree n (and not less), we have $p(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdot \ldots \cdot\left(\lambda-\lambda_{k}\right)^{m_{k}}$ with $m_{1}+\ldots+m_{k}=n$ for some $\lambda_{1}, \ldots, \lambda_{k} \in F$.

1.1 The matrix of a linear map

Let V be a vector space over F throughout, and let $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ a basis for V. Then for each $\mathbf{v} \in V$ there exists a unique list

$$
x_{1}, \ldots, x_{n} \in F \quad \text { such that } \quad \mathbf{v}=x_{1} \mathbf{v}_{1}+\ldots+x_{n} \mathbf{v}_{n} \quad \text { and we write } \quad[\mathbf{v}]^{\alpha}=\left[x_{i}\right]
$$

Let V, W be vector spaces and $T: V \rightarrow W$ a linear map. Given $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, \beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ a choice of bases for V and W, for each $j=1, \ldots, n$, the vector $T\left(\mathbf{v}_{j}\right) \in W$ has a unique decomposition $T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+\ldots+a_{m j} \mathbf{w}_{m}$ for some $a_{i j} \in F$ with $i=1, \ldots, m$. Then, we write

The $j^{\text {th }}$ column of $[T]_{\alpha}^{\beta}$ describes $T\left(\mathbf{v}_{j}\right)$, the image under T of the $j^{t h}$ vector \mathbf{v}_{j} in the basis α, in terms of coordinates defined by β.

1.2 Eigenspaces and diagonalization

Let $T: V \rightarrow V$ be a linear map throughout. For each $\lambda \in F$, we define the λ eigenspace $E_{\lambda}=\operatorname{ker}(T-\lambda I)=$ $\{\mathbf{v} \in V \mid T(\mathbf{v})=\lambda \mathbf{v}\} \subset V$ for T. A nonzero vector $\mathbf{v} \in E_{\lambda}$ is called an eigenvector, and any λ admitting such is called an eigenvalue.

Note that $\mathbf{w} \in E_{\lambda}$ is an eigenvector if and only if, for any basis $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ such that $\mathbf{v}_{i}=\mathbf{w}$, the matrix $[T]_{\alpha}^{\alpha}$ has $i^{t h}$ column entirely zero except in the $i^{t h}$ row, which is λ :

$$
[T]_{\alpha}^{\alpha}=\left[\left.\begin{array}{lll}
T\left(\mathbf{v}_{1}\right) \mid & \cdots & |T(\mathbf{w})|
\end{array} \cdots \quad \right\rvert\, T\left(\mathbf{v}_{n}\right)\right]^{\alpha}=\left[\begin{array}{ccccc}
a_{11} & \cdots & 0 & \cdots & a_{1 n} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
a_{i 1} & \cdots & \lambda & \cdots & a_{i n} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
a_{m 1} & \cdots & 0 & \cdots & a_{m n}
\end{array}\right] \in M_{n \times n}(F)
$$

In particular, this implies that $[T]_{\alpha}^{\alpha}$ is diagonal with $a_{i i}=\lambda_{i}$ if and only if every element \mathbf{v}_{i} of the basis α is an eigenvector with eigenvalue λ_{i}.

1.3 Invariant subspaces and blocks of a matrix

A subspace $W \subset V$ is called invariant under T if $T(W) \subset W$, or equivalently $T(\mathbf{w}) \in W$ for each $\mathbf{w} \in W$. Note that for W invariant, we can define $\left.T\right|_{W}: W \rightarrow W$.

A matrix $A \in M_{n \times n}(F)$ has a block of size j if there are j columns of A, numbered by i_{1}, \ldots, i_{j} say, such that each column is zero except in the rows i_{1}, \ldots, i_{j}; the remaining nonzero entries define a matrix $\tilde{A} \in M_{j \times j}(F)$, which is called the block.

A subspace W is invariant under T if and only if for any basis $\tilde{\alpha}$ for W extended to a basis α for V, the matrix $[T]$ has a block of size $\operatorname{dim} W$ in the columns corresponding to the basis elements of W. In this case, we have that $\left[\left.T\right|_{W}\right]_{\tilde{\alpha}}^{\tilde{\alpha}}=\tilde{A}$ is given by the corresponding block.

$$
[T]=\left[\begin{array}{cccc}
1 & 0 & 4 & 0 \\
5 & 4 & 3 & 1 \\
4 & 0 & 7 & 8 \\
9 & 0 & 5 & 9
\end{array}\right] \quad[T]=\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & 6 \\
3 & 4 & 0 & 0 & 3 \\
0 & 2 & 4 & 2 & 0 \\
5 & 4 & 3 & 4 & 1 \\
4 & 6 & 0 & 0 & 8
\end{array}\right] \quad[T]=\left[\begin{array}{ccccc}
4 & 0 & 0 & 0 & 0 \\
6 & 7 & 3 & 0 & 0 \\
4 & 8 & 3 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
5 & 0 & 0 & 5 & 1
\end{array}\right]
$$

2 Jordan Canonical Form

2.1 Overview

A linear map $T: V \rightarrow V$ is called block diagonal if $V=W_{1} \oplus \ldots \oplus W_{k}$ where each W_{i} is an invariant subspace. Equivalently, if we choose a basis for each W_{i} and adjoin them all to a basis α for V, then $[T]_{\alpha}^{\alpha}$ consists of k blocks of size $\operatorname{dim} W_{j}$:

$$
[T]=\left[\begin{array}{ccccc}
4 & 0 & 0 & 0 & 0 \\
0 & 7 & 3 & 0 & 0 \\
0 & 8 & 3 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 5 & 1
\end{array}\right] \quad V=W_{1} \oplus W_{2} \oplus W_{3}=\operatorname{Span}\left(\mathbf{v}_{1}\right) \oplus \operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right) \oplus \operatorname{Span}\left(\mathbf{v}_{4}, \mathbf{v}_{5}\right)
$$

A matrix $A \in M_{l \times l}(F)$ is called a λ_{i} Jordan block of size l if it is of the form:
$A=\left[\begin{array}{ccccc}\lambda_{i} & 1 & 0 & \ldots & 0 \\ 0 & \lambda_{i} & 1 & \ldots & 0 \\ \vdots & 0 & \ddots & \ddots & 0 \\ \vdots & \vdots & 0 & \lambda_{i} & 1 \\ 0 & \ldots & 0 & 0 & \lambda_{i}\end{array}\right] \quad$ e.g. $\quad A=\left[\lambda_{i}\right] \quad A=\left[\begin{array}{cc}\lambda_{i} & 1 \\ 0 & \lambda_{i}\end{array}\right] \quad A=\left[\begin{array}{ccc}\lambda_{i} & 1 & 0 \\ 0 & \lambda_{i} & 1 \\ 0 & 0 & \lambda_{i}\end{array}\right] \quad A=\left[\begin{array}{ccc}\lambda_{i} & 1 & 0 \\ 0 & \lambda_{i} & 1 \\ 0 & 0 \\ 0 & \lambda_{i} & 1 \\ 0 & 0 & 0 \\ \lambda_{i}\end{array}\right]$
Now, we state the main theorem:
Theorem 2.1. Let V be an n dimensional vector space over F an algebraically closed field, and $T: V \rightarrow V$ be a linear map with characteristic polynomial

$$
p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}} \quad \text { so that } \quad m_{1}+\ldots+m_{k}=n
$$

Then

$$
V=K_{\lambda_{1}} \oplus \ldots \oplus K_{\lambda_{k}} \quad \text { with } \quad \operatorname{dim} K_{\lambda_{i}}=m_{i}
$$

and each $K_{\lambda_{i}}$ is an invariant subspace; thus, T is block diagonal with respect to this decomposition.
Moreover, for each $i=1, \ldots, k$, we have $E_{\lambda_{i}} \subset K_{\lambda_{i}}$ and there is a further decomposition

$$
K_{\lambda_{i}}=C\left(\mathbf{v}_{1}\right) \oplus \ldots \oplus C\left(\mathbf{v}_{j_{i}}\right) \quad j_{i}=\operatorname{dim} E_{\lambda_{i}}
$$

such that for each $l=1, \ldots, j_{i}, C\left(\mathbf{v}_{l}\right)$ is invariant, and there is a natural basis α_{l} for each $C\left(\mathbf{v}_{l}\right)$ such that $\left[\left.T\right|_{C\left(\mathbf{v}_{l}\right)}\right]_{\alpha_{l}}^{\alpha_{l}}$ is a λ_{i} Jordan block.

Adjoining the bases α over all $i=1, \ldots, k$ and all $l=1, \ldots, j_{i}$, we obtain a basis for V such that $[T]$ is block diagonal with all blocks of Jordan type. A matrix of this type is said to be in Jordan canonical form.
Example 2.2. The following is an example of the Jordan decomposition guarenteed by the above Theorem.

$$
[T]=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \quad\left\{\begin{array}{l}
p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda-\lambda_{2}\right)^{3} \\
E_{\lambda_{1}}=\operatorname{Span}\left(\mathbf{v}_{1}\right) \subset K_{\lambda_{1}}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
E_{\lambda_{2}}=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{5}\right) \subset K_{\lambda_{2}}=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right) \\
K_{\lambda_{1}}=C\left(\mathbf{v}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
K_{\lambda_{2}}=C\left(\mathbf{v}_{4}\right) \oplus C\left(\mathbf{v}_{5}\right)=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{4}\right) \oplus \operatorname{Span}\left(\mathbf{v}_{5}\right)
\end{array}\right.
$$

To understand this theorem, we need to understand two main steps:
(1) How to define the decomposition $V=K_{\lambda_{1}} \oplus \ldots \oplus K_{\lambda_{k}}$
(2) For each λ_{i}, how to define the decomposition $K_{\lambda_{i}}=C\left(\mathbf{v}_{1}\right) \oplus \ldots \oplus C\left(\mathbf{v}_{j_{i}}\right)$ and the basis α_{l} for each $C\left(\mathbf{v}_{l}\right)$ which makes $\left[\left.T\right|_{C\left(\mathbf{v}_{l}\right)}\right]_{\alpha_{l}}^{\alpha_{l}}$ of Jordan type.
We will resolve the second item first, restricting to the case there is just a single eigenvalue, then resolve the first item and put it all together.

2.2 Nilpotent canonical form

Consider the special case of the above theorem when there is just a single eigenvalue, and for simplicity assume it is zero. We obtain:

Theorem 2.3. Let $T: V \rightarrow V$ with characteristic polynomial $p_{T}(\lambda)=\lambda^{n}$. Then there is a decomposition

$$
V=K_{\lambda_{0}}=C\left(\mathbf{v}_{1}\right) \oplus \ldots \oplus C\left(\mathbf{v}_{j_{0}}\right) \quad j_{0}=\operatorname{dim} E_{0}=\operatorname{ker}(T)
$$

such that for each $l=1, \ldots, j_{0}, C\left(\mathbf{v}_{l}\right)$ is invariant, and there is a natural basis α_{l} for each $C\left(\mathbf{v}_{l}\right)$ such that $\left[\left.T\right|_{C\left(\mathbf{v}_{l}\right)}\right]_{\alpha_{l}}^{\alpha_{l}}$ is a Jordan block with zero diagonal entries.

We now explain how to define the subspaces $C\left(\mathbf{v}_{l}\right)$ and the basis α_{l} such that $\left[\left.T\right|_{C\left(\mathbf{v}_{l}\right)}\right]_{\alpha_{l}}^{\alpha_{l}}$ is a Jordan block.

A linear map T with characteristic polynomial $p_{T}(\lambda)=\lambda^{n}$ is always nilpotent, that is, for each $\mathbf{v} \in V$ there exists k such that $T^{k} \mathbf{v}=0$.

Fix $\mathbf{v} \in V$ and choose the minimal such k as above, the set $\left\{T^{k-1} \mathbf{v}, T^{k-2} \mathbf{v}, \ldots, \mathbf{v}\right\}$ is called the cycle of \mathbf{v}, and

$$
C(\mathbf{v})=\operatorname{Span}\left\{T^{k-1} \mathbf{v}, T^{k-2} \mathbf{v}, \ldots, \mathbf{v}\right\} \subset V
$$

is called the cyclic subspace. The integer $k=\operatorname{dim} C(\mathbf{v})$ is called the length of the cycle of \mathbf{v}. We showed that the elements of the cycle are always linearly independent, and thus form a basis for $C(\mathbf{v})$, which we denote α. Then we have:

Corollary 2.4. $\left[\left.T\right|_{C(\mathbf{v})}\right]_{\alpha}^{\alpha}$ is a Jordan block with zero diagonal entries.
The above was defined for any vector $\mathbf{v} \in V$. We want a decomposition of V into cyclic subspaces as in the theorem.

A vector $\mathbf{v} \in V$ is called maximal if $\mathbf{v} \notin \operatorname{im}(T)$. There can be at most $j_{0}=\operatorname{dim} E_{0}=\operatorname{dim} \operatorname{ker}(V)$ linearly independent maximal vectors, and we choose a list $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j_{0}}$ of such. Then, we showed the resulting subspaces $C\left(\mathbf{v}_{i}\right)$ were mutually linearly independent, and that

$$
V=C\left(\mathbf{v}_{1}\right) \oplus \ldots \oplus C\left(\mathbf{v}_{j_{0}}\right)
$$

as desired.
Example 2.5. Consider $V=F^{2}$ with basis $\alpha=\mathbf{v}_{1}, \mathbf{v}_{2}$. Then

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { corresponds to } \quad V=C\left(\mathbf{v}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)
$$

Note the dimension of the kernel $j_{0}=1$, and this agrees with the number of cyclic subspaces in the decomposition.

Example 2.6. Consider $V=F^{3}$ with basis $\alpha=\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Then

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { corresponds to } \quad V=C\left(\mathbf{v}_{3}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)
$$

Again, the dimension of the kernel $j_{0}=1$, and this agrees with the number of cyclic subspaces in the decomposition.

Example 2.7. Consider again $V=F^{3}$ with basis $\alpha=\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Then

$$
[T]_{\alpha}^{\alpha}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { corresponds to } \quad V=C\left(\mathbf{v}_{2}\right) \oplus C\left(\mathbf{v}_{3}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \oplus \operatorname{Span}\left(\mathbf{v}_{3}\right)
$$

Here, the dimension of the kernel $j_{0}=2$, and this again agrees with the number of cyclic subspaces in the decomposition.

2.3 Jordan canonical form

Now, we return to the general case of $T: V \rightarrow V$ with $\operatorname{dim} V=n$, and

$$
p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}} \quad \text { so that } \quad m_{1}+\ldots+m_{k}=n
$$

We defined the generalized eigenspace of T corresponding to eigenvalue λ as the subspace

$$
K_{\lambda}=\left\{\mathbf{v} \in V \mid(T-\lambda)^{k} \mathbf{v}=\mathbf{0}\right\}
$$

Moreover, we showed that

- $K_{\lambda_{i}}$ is invariant under T
- $\operatorname{dim} K_{\lambda_{i}}=m_{i}$ is the multiplicity of the corresponding root of the characteristic polynomial
- $K_{\lambda_{i}} \subset V$ are mutually linearly independent

From this, we conclude that

$$
V=K_{\lambda_{1}} \oplus \ldots \oplus K_{\lambda_{k}}
$$

and that T is block diagonal with respect to this decomposition.
Now, it remains to apply our work in the nilpotent case to each $K_{\lambda_{i}}$. Note that by definition, we have:
Corollary 2.8. The restriction $T-\lambda_{i} I$ to $K_{\lambda_{i}}$ is nilpotent.
Thus, we can apply our nilpotent normal form theorem to each $T-\lambda_{i} I$ restricted to $K_{\lambda_{i}}$: we choose maximal vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j_{i}}$ of lengths k_{1}, \ldots, k_{l}, and let

$$
C\left(\mathbf{v}_{l}\right)=\operatorname{Span}\left\{\left(T-\lambda_{i} I\right)^{k_{l}-1} \mathbf{v}_{l},\left(T-\lambda_{i} I\right)^{k_{l}-2} \mathbf{v}_{l}, \ldots,\left(T-\lambda_{i} I\right) \mathbf{v}_{l}, \mathbf{v}_{l}\right\}
$$

together with the basis

$$
\alpha_{l}=\left\{\left(T-\lambda_{i} I\right)^{k_{l}-1} \mathbf{v}_{l},\left(T-\lambda_{i} I\right)^{k_{l}-2} \mathbf{v}_{l}, \ldots,\left(T-\lambda_{i} I\right) \mathbf{v}_{l}, \mathbf{v}_{l}\right\}
$$

Then, by construction, we have:
Corollary 2.9. $\left[\left.T\right|_{C\left(\mathbf{v}_{l}\right)}\right]_{\alpha_{l}}^{\alpha_{l}}$ is a λ_{i} Jordan block.
This essentially completes the proof of the theorem. Moreover, it provides the following algorithm for computing Jordan canonical form:

- Compute the characteristic polynomial $p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}}$
- For each eigenvalue λ_{i}, compute $\operatorname{ker}\left(T-\lambda_{i} I\right)^{j}$ for $j=1,2, \ldots$ until it is of dimension m_{i}.
- A vector is maximal if and only if it is in $\operatorname{ker}\left(T-\lambda_{i}\right)^{j}$ but not in the image of $\left(T-\lambda_{i}\right)$.

Recall our example from the overview:

$$
[T]=\left[\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right] \quad\left\{\begin{array}{l}
p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{2}\left(\lambda-\lambda_{2}\right)^{3} \\
E_{\lambda_{1}}=\operatorname{Span}\left(\mathbf{v}_{1}\right) \subset K_{\lambda_{1}}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
E_{\lambda_{2}}=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{5}\right) \subset K_{\lambda_{2}}=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right) \\
K_{\lambda_{1}}=C\left(\mathbf{v}_{2}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
K_{\lambda_{2}}=C\left(\mathbf{v}_{4}\right) \oplus C\left(\mathbf{v}_{5}\right)=\operatorname{Span}\left(\mathbf{v}_{3}, \mathbf{v}_{4}\right) \oplus \operatorname{Span}\left(\mathbf{v}_{5}\right)
\end{array}\right.
$$

