1 Review of basics

Fix an algebraically closed field F, that is, a field F such that for any polynomial p(\) € P, (F) of degree n
(and not less), we have p(A) = (A — A1) - ... (A = Ap)™* with mq + ... + mg = n for some Aq,..., A\, € F.

1.1 The matrix of a linear map

Let V be a vector space over F' throughout, and let a = {vy,...,v,} a basis for V. Then for each v € V
there exists a unique list

T1,...,xn € F' such that v =xz1vy + ...+ z,Vv, and we write [v]* = [z4] -

Let V,W be vector spaces and T : V. — W a linear map. Given a = {vy,...,v,},8 = {wy,....,w,,} a
choice of bases for V' and W, for each j = 1,...,n, the vector T(v;) € W has a unique decomposition
T(v;) = a1;w1 + ... + @ jWy, for some a,;; € F with ¢ = 1,...,m. Then, we write

aip Q1n

118 = [T(vi)] - [T(v,)] = a; € Myxn(F)

m1 - Amn

The j** column of [T]? describes T'(v;), the image under T' of the j** vector v; in the basis a, in terms of
coordinates defined by (.

1.2 Eigenspaces and diagonalization

Let T : V — V be a linear map throughout. For each A € F, we define the A eigenspace E\ = ker(T' — \I) =
{veV|T(v)=Av} CV for T. A nonzero vector v € E) is called an eigenvector, and any A admitting such
is called an eigenvalue.

Note that w € E) is an eigenvector if and only if, for any basis a = {vy,...,v,,} such that v; = w, the
matrix [T]¢ has i*" column entirely zero except in the i*" row, which is \:

all ... O DR aln
[11a = [Tv)l o ITw)] o Tva)]" = an o A o ain | € Maxn(F)
aml .. 0 e amn

[e3

In particular, this implies that [T
is an eigenvector with eigenvalue \;.

is diagonal with a;; = A; if and only if every element v; of the basis «

1.3 Invariant subspaces and blocks of a matrix

A subspace W C V is called invariant under 7" if T(W) C W, or equivalently T'(w) € W for each w € W.
Note that for W invariant, we can define T'|y : W — W.

A matrix A € My, (F) has a block of size j if there are j columns of A, numbered by iy,...,7; say,
such that each column is zero except in the rows i,...,7;; the remaining nonzero entries define a matrix
A € Mjy;(F), which is called the block.

A subspace W is invariant under T if and only if for any basis & for W extended to a basis « for V| the
matrix [T'] has a block of size dim W in the columns corresponding to the basis elements of . In this case,
we have that [T]y]2 = A is given by the corresponding block.
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2 Jordan Canonical Form

2.1 Overview

A linear map T : V — V is called block diagonal if V' = W7 & ... W), where each W is an invariant subspace.

Equivalently, if we choose a basis for each W; and adjoin them all to a basis « for V, then [T]% consists of

k blocks of size dim W;:

0 0 0 O
07 3 00
[T]=10 8 3 0 0 V =W, @& W, @ Ws = Span(vi) & Span(va, vs) & Span(va, vs)
00 0 6 O
00 0 5 1
A matrix A € M (F) is called a \; Jordan block of size [ if it is of the form:
Ao 1 0 0
Sl N 1 N1 T
A=1|" 0 0 eg. A=[] A= A=]0 A 1 A= i
0 X\ 0 0 M 0 0
0o N 1 t 0 0
0 0 0 N\

Now, we state the main theorem:

Theorem 2.1. Let V be an n dimensional vector space over F' an algebraically closed field, and T : V — V'
be a linear map with characteristic polynomial

pr(A) = (A= A)™ (A= Ap)™ so that my+..+mE=n.

Then
V=K, &..0K), with dim K, = m;

and each K, is an invariant subspace; thus, 1" is block diagonal with respect to this decomposition.
Moreover, for each i = 1,..., k, we have E\, C K, and there is a further decomposition

K,\i :C(Vl)@@C(ij) Ji idlmE)V

such that for each | = 1,...,j;, C(v;) is invariant, and there is a natural basis a; for each C(v;) such that
[T|cvylal is a A; Jordan block.

Adjoining the bases a over all i = 1,....,k and all [ = 1,...,j;, we obtain a basis for V' such that [T] is
block diagonal with all blocks of Jordan type. A matrix of this type is said to be in Jordan canonical form.

Example 2.2. The following is an example of the Jordan decomposition guarenteed by the above Theorem.

pr(A) = (A= A1)?(A = Ag)?

Ar 10 0 O

0O AN 0 0 0 E), =Span(vi)  C K, = Span(vy, v2)
[T]=(0 0 X 1 0 E), = Span(vs,vs) C Ky, = Span(vs, v4, Vs)

00 0 A 0 Ky, = C(vg) = Span(vy, va)

0 0 0 O

Ky, = C(vy4) ® C(vs) = Span(vs, v4) @ Span(vs)
To understand this theorem, we need to understand two main steps:
(1) How to define the decomposition V = Ky, @ ... ® K},

(2) For each \;, how to define the decomposition Ky, = C(v1) & ... & C(v;,) and the basis o, for each
C(v;) which makes [T|¢(v,)]a! of Jordan type.

We will resolve the second item first, restricting to the case there is just a single eigenvalue, then resolve
the first item and put it all together.
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2.2 Nilpotent canonical form

Consider the special case of the above theorem when there is just a single eigenvalue, and for simplicity
assume it is zero. We obtain:

Theorem 2.3. Let T : V — V with characteristic polynomial pr(A\) = A”. Then there is a decomposition
V=K,=CWv1)®..8C(vy,) Jo = dim Ey = ker(T)

such that for each | = 1,..., jo, C(v;) is invariant, and there is a natural basis «; for each C(v;) such that

[T|c(vylal is a Jordan block with zero diagonal entries.

We now explain how to define the subspaces C(v;) and the basis o; such that [T[c(y,)|q! is a Jordan
block.
A linear map T with characteristic polynomial pr(A) = A" is always nilpotent, that is, for each v € V
there exists k such that T*Fv = 0.
Fix v € V and choose the minimal such k as above, the set {T*~!v,T*=2v ... v} is called the cycle of
v, and
C(v) = Span{T* v, T" 2v,..,v} CV

is called the cyclic subspace. The integer £ = dim C(v) is called the length of the cycle of v. We showed
that the elements of the cycle are always linearly independent, and thus form a basis for C'(v), which we

denote a. Then we have:
Corollary 2.4. [T|c(v)]5 is a Jordan block with zero diagonal entries.

The above was defined for any vector v € V. We want a decomposition of V' into cyclic subspaces as in
the theorem.

A vector v € V is called maximal if v ¢ im(7T"). There can be at most jo = dim Ey = dimker(V)
linearly independent maximal vectors, and we choose a list vy, ..., v;, of such. Then, we showed the resulting
subspaces C(v;) were mutually linearly independent, and that

V= C(Vl) D...D C(Vjo)
as desired.

Example 2.5. Consider V = F? with basis o = v1,vy. Then

[T]2 = {8 é] corresponds to V = C(v2) = Span(vy, va)

Note the dimension of the kernel j, = 1, and this agrees with the number of cyclic subspaces in the
decomposition.

Example 2.6. Consider V = F? with basis o = vy, va, v3. Then

|
2
Il
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oo

0
1 corresponds to V = C(v3) = Span(vy,va,v3)
0

Again, the dimension of the kernel j, = 1, and this agrees with the number of cyclic subspaces in the
decomposition.

Example 2.7. Consider again V = F3 with basis a = v1, Vs, vs. Then

corresponds to V = C(v2) ® C(v3) = Span(vy, va) @ Span(vs)
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Here, the dimension of the kernel jo = 2, and this again agrees with the number of cyclic subspaces in the
decomposition.



2.3 Jordan canonical form
Now, we return to the general case of T': V — V with dim V' = n, and
pr(A) = (A= A1) (A= X)) so that my+..+mp=n.
We defined the generalized eigenspace of T corresponding to eigenvalue A as the subspace
Ky={veV|(T-)\Nv=0}.
Moreover, we showed that
e K, is invariant under T'
o dim K, = m; is the multiplicity of the corresponding root of the characteristic polynomial
e K, C V are mutually linearly independent

From this, we conclude that
V= K)\l @...@K,\k

and that T is block diagonal with respect to this decomposition.
Now, it remains to apply our work in the nilpotent case to each K,. Note that by definition, we have:

Corollary 2.8. The restriction T'— ;I to K, is nilpotent.

Thus, we can apply our nilpotent normal form theorem to each 7" — A;I restricted to K),: we choose
of lengths k1, ..., k;, and let

maximal vectors vy, ..., vj,
C(v;) = Span{(T — \; )" 1wy, (T — ND)F vy, ooy (T — N D) vy, vi}
together with the basis
o = {(T — NIty (T — DR vy, o (T = ND)vy, v}
Then, by construction, we have:

Corollary 2.9. [T|c(v,lat is a A; Jordan block.

[e3

This essentially completes the proof of the theorem. Moreover, it provides the following algorithm for
computing Jordan canonical form:

e Compute the characteristic polynomial pr(A) = (A — Ap)™1..(A = Ap)™*

e For each eigenvalue \;, compute ker(T — \;I)7 for j = 1,2, ... until it is of dimension m;.
e A vector is maximal if and only if it is in ker(7" — X;)? but not in the image of (T — \;).
Recall our example from the overview:

pr(N) = (A= )*(A = A)?

A1 0 0 O

0 A\ 0O 0 0 Ey, =Span(vi) C K, = Span(vi,vz)
[T]=(0 0 X 1 0 E), = Span(vs,vs) C Ky, = Span(vs, vy, vs)

0 0 0 A 0 = C(v2) = Span(vy, va)

0 0 00 K>, = C(v4) ® C(vs) = Span(vy, v4) @ Span(vs)
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