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Overview: Diagonalization to Jordan Form
Let V a finite dimensional F vector space and T : V → V linear.

Fix a basis α = {v1, ..., vn} for V . By definition, TFAE:
I [T ]αα is diagonal with aii = λi for each i = 1, ..., n
I T (vi ) = λivi for each i = 1, ..., n
I vi is an eigenvector with eigenvalue λi for each i = 1, ..., n

Definition: T is diagonalizeable if there exists such a basis α.

In sum: Diagonalizable iff there is a basis of eigenvectors.

Let Eλ = {v ∈ V |T (v) = λv} = ker(T − λI ) the λ-eigenspace.

Proposition: For λi ∈ R distinct, we have Eλ1 ⊕ ...⊕ Eλk
⊂ V .

Corollary: T is diagonalizeable iff V = Eλ1 ⊕ ...⊕ Eλk
.

Let pT (λ) = det(T − λI ) = (λ− λ1)m1 ...(λ− λk)mk · p̃(λ).

Note that m1 + ...+ mk ≤ n = dimV , with equality iff p̃ = 1.

Proposition: For each i = 1, ..., k, we have 1 ≤ dimEλi
≤ mi .

Theorem: T : V → V is diagonalizable if and only if

(1) m1 + ...+ mk = n (Equivalently, pT (λ) has n roots)
(2) dimEλi

= mi for each i = 1, ..., k.
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Assumption: From now on we assume F is such that all
polynomials factor. (E.g. F = C , but not F = R).

Then, pT (λ) = det(T − λI ) = (λ− λ1)m1 ...(λ− λk)mk

with m1 + ...+ mk = n, and T is diagonalizeable iff dimEλi
= mi .

This can still fail, i.e. dimEλi
< mi . e.g. [T ] =

[
λ1 1
0 λ1

]
. But:

Theorem: Let T : V → V . Then there exists a basis α for V s.t.

[T ]αα is a ‘block diagonal’ matrix, with each block given by
λi 1 0 . . . 0
0 λi 1 . . . 0
... 0

. . .
. . . 0

...
... 0 λi 1

0 . . . 0 0 λi

 . e.g.


λ1 1 0 0 0
0 λ1 0 0 0
0 0 λ2 1 0
0 0 0 λ2 0
0 0 0 0 λ2


Equivalently, V = ⊕iKλi

for Eλi
⊂ Kλi

⊂ V , with dimKλi
= mi .

E.g. V = F 5, Kλ1 = Span{v1, v2}, Kλ2 = Span{v3, v4, v5},
Eλ1 = Span{v1} and Eλ2 = Span{v3, v5}. What are v2, v4?

Definition: Matrices of this type are called λi Jordan blocks.
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Blocks of a matrix and triangularization review
Definition: A subspace W ⊂ V is T -invariant if T (W ) ⊂W .

Definition: A block of size m in a matrix A ∈ Mn×n(F ) is a list of
m successive columns of A which are 0 except in those m rows.

Proposition: A subspace W ⊂ V is T -invariant if and only if for
any basis α′ of W extended to a basis α of V , [T ] has a block of
size dimW in the columns/rows corresponding to α′.

Eg: For [T ] =


1 3 0 0 6
3 4 0 0 3
0 2 4 2 0
5 4 3 4 1
4 6 0 0 8

 W = Span{v3, v4} is invariant.

Definition [A] ∈ Mn×n(F ) is called triangular if aij = 0 for i > j .

Corollary: Let α = {v1, ..., vn} a basis for V . Then [T ]αα is
triangular if and only Span(v1, ...vk) is invariant for k = 1, ..., n.

Theorem: Any T : V → V such that pT (λ) has n roots is
triangularizable. ( By our assumption on F , this applies for any T .)
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Summary: For any T : V → V , [T ] can be made triangular , but
it can not necessarily be made diagonal. How close can we get?

Proposition: If A is triangular, then det(A) = a11...ann.

Corollary: Triangular and diagonal matrices with same diagonal
entries λi have the same char. polynomial (λ− λ1)m1 ...(λ− λk)mk

We need to learn how to distinguish between linear maps T s.t.

[T ] =

λ1 1 0
0 λ1 1
0 0 λ1

 ,

λ1 0 0
0 λ1 1
0 0 λ1

 and

λ1 0 0
0 λ1 0
0 0 λ1


Exercise: Chech that all these matrices satisfy pT (λ) = (λ− λ1)3.

Exercise: Compute dimEλ1 for each of the above matrices. 1, 2, 3

Note that 1 ≤ dimEλ1 ≤ 3 = m1, with equality iff diagonalizable.

Exercise: What are the dimensions of the blocks, or equivalently
invariant subspaces, in each of the above cases? 3, (1,2), (1,1,1)

Now, we need to learn how to find the block sizes of T , or
equivalently, how to choose a basis to so that [T ] of this form.
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Towards nilpotent normal form

Let’s begin with the simplest case: T : V → V with pT (λ) = λn.

Then the only possible eigenvalue is λ1 = 0, and E0 = ker(T ).

Corollary: T is diagonalizable iff E0 = V iff T is the zero map.

Thus, we see that being diagonalizable is ‘rare’ among all such T .

Definition: A map N : V → V is nilpotent if Nk = 0 for some k.

Exercise: Compute N2,N3 for [N] =

0 1 0
0 0 1
0 0 0

 ,

0 0 0
0 0 1
0 0 0


Theorem: T : V → V is nilpotent if and only if pT (λ) = λn.

Definition: Let K0 = {v ∈ V |T kv = 0} for some k .

Note E0 ⊂ K0. For T nilpotent K0 = V , T diagonal iff E0 = V .

Exercise: For each [N] above, what is the subspace E0 ⊂ K0 = V ?

Question: For T nilpotent, how do we choose a basis so that [T ]
only has off-diagonal 1’s, such as in the above examples?
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Nilpotent normal form
Throughout let T : V → V nilpotent, so pT (λ) = λn and V = K0.

Then for each v ∈ V , there is some minimal k such that T kv = 0.

Definition: The set {T k−1v,T k−2v, ..., v} is called the cycle of v.

C (v) = Span{T k−1v,T k−2v, ..., v} ⊂ V the cyclic subspace.

The integer k = dimC (v) is called the length of the cycle of v.

A vector v ∈ V is called maximal if v /∈ im(T ).

Exercise: Let [T1] =

0 1 0
0 0 1
0 0 0

 , [T2] =

0 0 0
0 0 1
0 0 0

. Compute:

the maximal vectors v ∈ V , and their C (v). What if v is not max.?
Prop.: Let v1, ..., vj ∈ V maximal and linearly independent.

Then C (vi ) are mutually lin. indep.: C (v1)⊕ ...⊕ C (vj) ⊂ V .

Theorem: Let j = dimE0. Then there exist v1, ..., vj maximal,
such that C (v1)⊕ ...⊕ C (vj) = V .

Thus, [T ] has j Jordan blocks of size k(j) = dimC (vj) with λ = 0.
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Towards Jordan Form

Now, let T : V → V any linear map (not necessarily nilpotent).

We can still define K0, and we have E0 = ker(T ) ⊂ K0 ⊂ V .

Definition: The subspace Kλ = {v ∈ V |(T − λ)kv = 0} is the
generalized eigenspace of T corresponding to eigenvalue λ.

Exercise: Compute Eλ1 and Kλ1 for each of the following:

[T ] =

λ1 1 0
0 λ1 1
0 0 λ1

 ,

λ1 0 0
0 λ1 1
0 0 λ1

 and

λ1 0 0
0 λ1 0
0 0 λ1


Proposition: For each eigenvalue λi : Kλi

is an invariant subspace.

We have dimKλi
= mi the multiplicity of λi in pT (λ).

The subspaces Kλi
are mutually linearly independent.

Corollary: V = Kλ1 ⊕ ...⊕ Kλk
, as m1 + ...+ mk = n = dimV .

Thus, if we choose a basis for each Kλi
, all together they form a

basis of V , and [T ] is block diagonal with respect to this basis.
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Jordan Form
Now, let’s focus on Eλi

⊂ Kλi
for a single eigenvalue λi .

Since Kλi
is invariant under T , we can consider T |Kλi

: Kλi
→ Kλi

.

Note that by definition, T |Kλi
− λI is nilpotent.

Thus, we can apply the nilpotent normal form theorem from earlier:

Let ji = dim ker(T |Kλi
− λI ) = dimEλi

. Then there exist vl1 , ..., vlji
maximal vectors for T |Kλi

− λI , s.t. Kλi
= C (vl1)⊕ ...⊕ C (vlji ).

Thus, T |Kλi
decomposes into ji Jordan blocks of size dimC (vl).

Theorem: Let T : V → V with pT (λ) = (λ− λ1)m1 ...(λ− λk)mk .

There exists a basis α for V s.t.

I T decomposes into k blocks of dimension mi (the Kλi
’s)

I Each of these decomposes into ji smaller blocks (the C (vl)’s)

I Each smaller block is of Jordan type with diagonal λi :

Example: The matrix from beginning of class has three blocks:
a 2d λ1 block, a 2d λ2 block, and another 1d λ2 block.
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