MAT224 - LEC5101 - Lecture 10 Vector spaces over fields and triangular form

Dylan Butson

University of Toronto

March 10, 2020

Review: Diagonalization

Let V a finite dimensional vector space and $T: V \rightarrow V$ linear.

Fix a basis $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for V. By definition, TFAE:

• $[T]^{\alpha}_{\alpha}$ is diagonal with $a_{ii} = \lambda_i$ for each i = 1, ..., n

•
$$T(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$$
 for each $i = 1, ..., n$

v_i is an eigenvector with eigenvalue λ_i for each i = 1, ..., n

Definition: *T* is diagonalizeable if there exists such a basis α . In sum: **Diagonalizable iff there is a basis of eigenvectors.** Let $E_{\lambda} = \{\mathbf{v} \in V | T(\mathbf{v}) = \lambda \mathbf{v}\} = \ker(T - \lambda I)$ the λ -eigenspace. We showed these spaces are mutually linearly independent, i.e.: **Proposition:** For $\lambda_i \in \mathbb{R}$ distinct, we have $E_{\lambda_1} \oplus ... \oplus E_{\lambda_k} \subset V$. That is, $E_{\lambda_i} \cap (\sum_{j \neq i} E_{\lambda_j}) = \{\mathbf{0}\}$ for each j = 1, ..., k. **Corollary:** We can adjoin the bases of all eigenspaces without

Corollary: We can adjoin the bases of all eigenspaces without introducing any linear dependences.

This gives a basis for V of eigenvectors iff these actually span V. **Corollary:** T is diagonalizeable iff $V = E_{\lambda_1} \oplus ... \oplus E_{\lambda_k}$. Review: Diagonalizability and the characteristic polynomial When does $V = E_{\lambda_1} \oplus ... \oplus E_{\lambda_k}$ for $\lambda_1, ..., \lambda_k$ the eigenvalues for T? Recall $p_T(\lambda) = \det(T - \lambda I)$. $E_{\lambda_i} \neq \{\mathbf{0}\}$ iff λ_i a root of $p_T(\lambda)$. Now, suppose $p_T(\lambda) = (\lambda - \lambda_1)^{m_1}...(\lambda - \lambda_k)^{m_k} \cdot \tilde{p}(\lambda)$ where $\tilde{p}(\lambda)$ has no roots. e.g. $\tilde{p}(\lambda) = \lambda^2 + 1$. Note that $m_1 + ... + m_k \leq n = \dim V$, with equality iff $\tilde{p} = 1$. **Proposition:** For each i = 1, ..., k, we have $1 \leq \dim E_{\lambda_i} \leq m_i$. **Theorem:** $T : V \to V$ is diagonalizable if and only if

(1) $m_1 + ... + m_k = n$ (Equivalently, $p_T(\lambda)$ has *n* roots) (2) dim $E_{\lambda_i} = m_i$ for each i = 1, ..., k.

How can these fail?

(1) $p_T(\lambda)$ does not have *n* roots. e.g. $[T] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. (2) $p_T(\lambda)$ has repeated roots, dim $E_{\lambda_i} < m_i$. e.g. $[T] = \begin{bmatrix} \lambda_1 & 1 \\ 0 & \lambda_1 \end{bmatrix}$ **Corollary:** If $p_T(\lambda)$ has *n* distinct roots, then *T* is diagonalizable.

Complex Vector Spaces and Diagonalization

We'll now try to resolve the issue (1) above. This will motivate us to study vector spaces over the 'field' \mathbb{C} instead of \mathbb{R} .

Let $[T] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, recall $p_T(\lambda) = \lambda^2 + 1$, has no roots $\lambda_1 \in \mathbb{R}$. However, we know $p_T(\lambda) = (\lambda + i)(\lambda - i)$, where $i^2 = -1$. Thus, if we allow \mathbb{C} numbers, then we find $\lambda_1 = i, \lambda_2 = -i$. **Exercise:** Find 'eigenvectors' $\mathbf{v} \in \text{ker}(T - \lambda_i I)$ for λ_1, λ_2 above. Warning: you need to use $\mathbf{v} = (a, b)$ for $a, b \in \mathbb{C}$ instead of just \mathbb{R} . **Solution:** $\mathbf{v} = (1, -i) \in \ker(T - iI)$, $\mathbf{v} = (1, i) \in \ker(T - (-i)I)$. Thus, using \mathbb{C} eigenvalues and eigenvectors, [T] is diagonalizable. This will turn out to always solve the issue (1) above, since: **Theorem:** Let $p(\lambda) = a_n \lambda^n + ... + a_1 \lambda + a_0$, with $a_i \in \mathbb{C}$, $a_n \neq 0$. $p(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_k)^{m_k}$ for some $\lambda_i \in \mathbb{C}$. Then

Note $m_1 + ... + m_k = n$ always. Thus (1) is indeed resolved.

Fields

Instead of just $\mathbb C,$ we will generalize from $\mathbb R$ to any 'field':

Definition: A *field* is a set F together with two operations, called:

- (A) Addition, which takes $a, b \in F$ and produce $a + b \in F$.
- (B) Mult., which takes $a, b \in F$ and produces $a \odot b \in F$, such that

1. For all
$$a, b, c \in F$$
, $(a+b)+c = a+(b+c)$

- 2. For all $a, b \in F$, a + b = b + a.
- There exists a unique element 0 ∈ F with the property that a+0 = a for all a ∈ F
- For each a ∈ F, there exists a unique −a ∈ F with the property that a + (−a) = 0

5. For all
$$a, b, c \in F$$
, $a \odot (b \odot c) = (a \odot b) \odot c$

- 6. For all $a, b \in F$, $a \odot b = b \odot a$
- 7. For all $a, b, c \in F$, $a \odot (b + c) = a \odot b + a \odot c$
- 8. There exists a unique element $1 \in F$ with the property that $1 \odot a = a$ for all $a \in F$
- For all non-zero a ∈ F, there exists a unique a⁻¹ ∈ F with the property that a ⊙ (a⁻¹) = 1

Example: The sets \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields. **Exercise:** \mathbb{Z} is not. 5/8

Vector Spaces over Fields

Definition A vector space over a field F is a set V together with:

- (A) an operation called *vector addition*, which for each pair of vectors $\mathbf{x}, \mathbf{y} \in V$ produces another vector $\mathbf{x} + \mathbf{y}$ in *V*; and
- (B) an operation called *multiplication by a scalar*, which for each vector $\mathbf{x} \in V$, and each scalar $c \in F$ produces another vector in V denoted $c\mathbf{x}$; such that
 - 1. For all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
 - 2. For all vectors $\mathbf{x}, \mathbf{y} \in V$, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
 - 3. There exists a vector $\mathbf{0} \in V$ with the property that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all vectors $\mathbf{x} \in V$
 - 4. For each vector $\mathbf{x} \in V$, there exists a vector $-\mathbf{x} \in \mathbf{V}$ with the property that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$
 - 5. For all vectors $\mathbf{x}, \mathbf{y} \in V$, and scalars $c \in F$, $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$
 - 6. For all vectors $\mathbf{x} \in V$, and scalars $c, d \in F$,

 $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$

- 7. For all vectors $\mathbf{x} \in V$, and scalars $c, d \in F$, $(cd)\mathbf{x} = c(d\mathbf{x})$
- 8. For all vectors $\mathbf{x} \in V$, $1\mathbf{x} = \mathbf{x}$

Linear algebra over arbitrary fields F

In sum, we just replace \mathbb{R} by F everywhere in the definition. **Examples:** $F^n = \{(x_1, ..., x_n) | x_i \in F\}$ is a F vector space $P_n(F) = \{a_n x^n + \dots + a_1 x + a_0 | a_i \in F\}$ is a F vector space $M_{m \times n}(F)$, the set of matrices with entries in F, is a F vector space Fact: We can now literally repeat every definition and theorem from the course so far, replacing \mathbb{R} by F, and they remain true. Thus, you now know how to do linear algebra over any field F. Now, let's go back to our motivation: simpler diagonalization. Note $\mathbb{R} \subset \mathbb{C}$ so $M_{n \times n}(\mathbb{R}) \subset M_{n \times n}(\mathbb{C})$. Moreover, we have **Corollary:** Let *V* a \mathbb{C} vector space of dimension *n* and *T* : *V* \rightarrow *V*. $p(\lambda) = (\lambda - \lambda_1)^{m_1} ... (\lambda - \lambda_k)^{m_k}$ for some $\lambda_i \in \mathbb{C}$. Then Thus, T is diagonalizable iff dim $E_{\lambda_i} = m_i$ for each i = 1, ..., k. It remains to understand exactly when this works and how it fails.

Triangularization

Definition $[A] \in M_{n \times n}(F)$ is called triangular if $a_{ii} = 0$ for i > j. **Lemma:** Let $A \in M_{k \times k}(F)$, $B \in M_{(n-k) \times (n-k)}(F)$, and $C \in M_{k \times (n-k)}(F)$. Then det $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \det(A) \det(B)$. **Corollary:** If A is triangular, then $det(A) = a_{11}...a_{nn}$. Throughout, let V an F vector space and $T: V \rightarrow V$ linear. **Definition:** A subspace $W \subset V$ is *T*-invariant if $T(W) \subset W$. **Proposition:** Let $\alpha = {\mathbf{v}_1, ..., \mathbf{v}_n}$ a basis for V. Then $[T]^{\alpha}_{\alpha}$ is triangular if and only Span $(\mathbf{v}_1, ..., \mathbf{v}_k)$ is invariant for k = 1, ..., n. Now, suppose $p_T(\lambda)$ has *n* roots. (e.g. always true over $F = \mathbb{C}$.) **Lemma:** For any invariant subspace $W \subset V$, there exists $W \subset \tilde{W} \subset V$ with dim $\tilde{W} = \dim W + 1$ and \tilde{W} invariant. **Theorem:** Any $T: V \to V$ such that $p_T(\lambda)$ has *n* roots is triangularizable.