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Review: Diagonalization
Let V a finite dimensional vector space and T : V → V linear.

Fix a basis α = {v1, ..., vn} for V . By definition, TFAE:

I [T ]αα is diagonal with aii = λi for each i = 1, ..., n
I T (vi ) = λivi for each i = 1, ..., n
I vi is an eigenvector with eigenvalue λi for each i = 1, ..., n

Definition: T is diagonalizeable if there exists such a basis α.

In sum: Diagonalizable iff there is a basis of eigenvectors.

Let Eλ = {v ∈ V |T (v) = λv} = ker(T − λI ) the λ-eigenspace.

We showed these spaces are mutually linearly independent, i.e.:

Proposition: For λi ∈ R distinct, we have Eλ1 ⊕ ...⊕ Eλk
⊂ V .

That is, Eλi
∩ (
∑

j 6=i Eλj
) = {0} for each j = 1, .., k .

Corollary: We can adjoin the bases of all eigenspaces without
introducing any linear dependences.

This gives a basis for V of eigenvectors iff these actually span V .

Corollary: T is diagonalizeable iff V = Eλ1 ⊕ ...⊕ Eλk
.
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Review: Diagonalizability and the characteristic polynomial
When does V = Eλ1 ⊕ ...⊕Eλk

for λ1, ..., λk the eigenvalues for T?

Recall pT (λ) = det(T − λI ). Eλi
6= {0} iff λi a root of pT (λ).

Now, suppose pT (λ) = (λ− λ1)m1 ...(λ− λk)mk · p̃(λ)

where p̃(λ) has no roots. e.g. p̃(λ) = λ2 + 1.

Note that m1 + ...+ mk ≤ n = dimV , with equality iff p̃ = 1.

Proposition: For each i = 1, ..., k, we have 1 ≤ dimEλi
≤ mi .

Theorem: T : V → V is diagonalizable if and only if

(1) m1 + ...+ mk = n (Equivalently, pT (λ) has n roots)

(2) dimEλi
= mi for each i = 1, ..., k.

How can these fail?

(1) pT (λ) does not have n roots. e.g. [T ] =

[
0 −1
1 0

]
.

(2) pT (λ) has repeated roots, dimEλi
< mi . e.g. [T ] =

[
λ1 1
0 λ1

]
Corollary: If pT (λ) has n distinct roots, then T is diagonalizable.
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Complex Vector Spaces and Diagonalization

We’ll now try to resolve the issue (1) above. This will motivate us
to study vector spaces over the ‘field’ C instead of R.

Let [T ] =

[
0 −1
1 0

]
, recall pT (λ) = λ2 + 1 , has no roots λ1 ∈ R.

However, we know pT (λ) = (λ+ i)(λ− i), where i2 = −1.

Thus, if we allow C numbers, then we find λ1 = i , λ2 = −i .
Exercise: Find ‘eigenvectors’ v ∈ ker(T − λi I ) for λ1, λ2 above.

Warning: you need to use v = (a, b) for a, b ∈ C instead of just R.

Solution: v = (1,−i) ∈ ker(T − iI ) , v = (1, i) ∈ ker(T − (−i)I ).

Thus, using C eigenvalues and eigenvectors, [T ] is diagonalizable.

This will turn out to always solve the issue (1) above, since:

Theorem: Let p(λ) = anλ
n + ...+ a1λ+ a0, with ai ∈ C, an 6= 0.

Then p(λ) = (λ− λ1)m1 ...(λ− λk)mk for some λi ∈ C.

Note m1 + ...+ mk = n always. Thus (1) is indeed resolved.
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Fields
Instead of just C, we will generalize from R to any ‘field’:
Definition: A field is a set F together with two operations, called:

(A) Addition, which takes a, b ∈ F and produce a + b ∈ F .
(B) Mult., which takes a, b ∈ F and produces a� b ∈ F , such that

1. For all a, b, c ∈ F , (a + b) + c = a + (b + c)
2. For all a, b ∈ F , a + b = b + a.
3. There exists a unique element 0 ∈ F with the property that

a + 0 = a for all a ∈ F
4. For each a ∈ F , there exists a unique −a ∈ F with the

property that a + (−a) = 0
5. For all a, b, c ∈ F , a� (b � c) = (a� b)� c
6. For all a, b ∈ F , a� b = b � a
7. For all a, b, c ∈ F , a� (b + c) = a� b + a� c
8. There exists a unique element 1 ∈ F with the property that

1� a = a for all a ∈ F
9. For all non-zero a ∈ F , there exists a unique a−1 ∈ F with the

property that a� (a−1) = 1

Example: The sets Q,R and C are fields. Exercise: Z is not. 5 / 8



Vector Spaces over Fields
Definition A vector space over a field F is a set V together with:

(A) an operation called vector addition, which for each pair of
vectors x, y ∈ V produces another vector x + y in V ; and

(B) an operation called multiplication by a scalar, which for each
vector x ∈ V , and each scalar c ∈ F produces another vector
in V denoted cx; such that

1. For all vectors x, y, z ∈ V , (x + y) + z = x + (y + z)

2. For all vectors x, y ∈ V , x + y = y + x
3. There exists a vector 0 ∈ V with the property that x + 0 = x

for all vectors x ∈ V

4. For each vector x ∈ V , there exists a vector −x ∈ V with the
property that x + (−x) = 0

5. For all vectors x, y ∈ V , and scalars c ∈ F , c(x + y) = cx + cy
6. For all vectors x ∈ V , and scalars c, d ∈ F ,

(c + d)x = cx + dx
7. For all vectors x ∈ V , and scalars c, d ∈ F , (cd)x = c(dx)

8. For all vectors x ∈ V , 1x = x
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Linear algebra over arbitrary fields F

In sum, we just replace R by F everywhere in the definition.

Examples: F n = {(x1, ..., xn)|xi ∈ F} is a F vector space

Pn(F ) = {anxn + ...+ a1x + a0|ai ∈ F} is a F vector space

Mm×n(F ), the set of matrices with entries in F , is a F vector space

Fact: We can now literally repeat every definition and theorem
from the course so far, replacing R by F , and they remain true.

Thus, you now know how to do linear algebra over any field F .

Now, let’s go back to our motivation: simpler diagonalization.

Note R ⊂ C so Mn×n(R) ⊂ Mn×n(C). Moreover, we have

Corollary: Let V a C vector space of dimension n and T : V → V .

Then p(λ) = (λ− λ1)m1 ...(λ− λk)mk for some λi ∈ C.

Thus, T is diagonalizable iff dimEλi
= mi for each i = 1, ..., k.

It remains to understand exactly when this works and how it fails.
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Triangularization

Definition [A] ∈ Mn×n(F ) is called triangular if aij = 0 for i > j .

Lemma: Let A ∈ Mk×k(F ),B ∈ M(n−k)×(n−k)(F ), and

C ∈ Mk×(n−k)(F ). Then det

[
A C
0 B

]
= det(A) det(B).

Corollary: If A is triangular, then det(A) = a11...ann.

Throughout, let V an F vector space and T : V → V linear.

Definition: A subspace W ⊂ V is T -invariant if T (W ) ⊂W .

Proposition: Let α = {v1, ..., vn} a basis for V . Then [T ]αα is
triangular if and only Span(v1, ...vk) is invariant for k = 1, ..., n.

Now, suppose pT (λ) has n roots. (e.g. always true over F = C.)

Lemma: For any invariant subspace W ⊂ V , there exists
W ⊂ W̃ ⊂ V with dim W̃ = dimW + 1 and W̃ invariant.

Theorem: Any T : V → V such that pT (λ) has n roots is
triangularizable.
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