# MAT224 - LEC5101 - Lecture 10 <br> Vector spaces over fields and triangular form 

Dylan Butson

University of Toronto

March 10, 2020

## Review: Diagonalization

Let $V$ a finite dimensional vector space and $T: V \rightarrow V$ linear.
Fix a basis $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ for $V$. By definition, TFAE:

- $[T]_{\alpha}^{\alpha}$ is diagonal with $a_{i i}=\lambda_{i}$ for each $i=1, \ldots, n$
- $T\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}$ for each $i=1, \ldots, n$
- $\mathbf{v}_{i}$ is an eigenvector with eigenvalue $\lambda_{i}$ for each $i=1, \ldots, n$

Definition: $T$ is diagonalizeable if there exists such a basis $\alpha$. In sum: Diagonalizable iff there is a basis of eigenvectors. Let $E_{\lambda}=\{\mathbf{v} \in V \mid T(\mathbf{v})=\lambda \mathbf{v}\}=\operatorname{ker}(T-\lambda I)$ the $\lambda$-eigenspace.
We showed these spaces are mutually linearly independent, i.e.:
Proposition: For $\lambda_{i} \in \mathbb{R}$ distinct, we have $E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}} \subset V$.
That is, $E_{\lambda_{i}} \cap\left(\sum_{j \neq i} E_{\lambda_{j}}\right)=\{\mathbf{0}\}$ for each $j=1, . ., k$.
Corollary: We can adjoin the bases of all eigenspaces without introducing any linear dependences.
This gives a basis for $V$ of eigenvectors iff these actually span $V$.
Corollary: $T$ is diagonalizeable iff $V=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}$.

## Review: Diagonalizability and the characteristic polynomial

When does $V=E_{\lambda_{1}} \oplus \ldots \oplus E_{\lambda_{k}}$ for $\lambda_{1}, \ldots, \lambda_{k}$ the eigenvalues for $T$ ?
Recall $p_{T}(\lambda)=\operatorname{det}(T-\lambda /)$. $E_{\lambda_{i}} \neq\{\mathbf{0}\}$ iff $\lambda_{i}$ a root of $p_{T}(\lambda)$.
Now, suppose $p_{T}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}} \cdot \tilde{p}(\lambda)$
where $\tilde{p}(\lambda)$ has no roots. e.g. $\tilde{p}(\lambda)=\lambda^{2}+1$.
Note that $m_{1}+\ldots+m_{k} \leq n=\operatorname{dim} V$, with equality iff $\tilde{p}=1$.
Proposition: For each $i=1, \ldots, k$, we have $1 \leq \operatorname{dim} E_{\lambda_{i}} \leq m_{i}$.
Theorem: $T: V \rightarrow V$ is diagonalizable if and only if
(1) $m_{1}+\ldots+m_{k}=n \quad$ (Equivalently, $p_{T}(\lambda)$ has $n$ roots)
(2) $\operatorname{dim} E_{\lambda_{i}}=m_{i}$ for each $i=1, \ldots, k$.

How can these fail?
(1) $p_{T}(\lambda)$ does not have $n$ roots. e.g. $[T]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(2) $p_{T}(\lambda)$ has repeated roots, $\operatorname{dim} E_{\lambda_{i}}<m_{i}$. e.g. $[T]=\left[\begin{array}{cc}\lambda_{1} & 1 \\ 0 & \lambda_{1}\end{array}\right]$

Corollary: If $p_{T}(\lambda)$ has $n$ distinct roots, then $T$ is diagonalizable.

## Complex Vector Spaces and Diagonalization

We'll now try to resolve the issue (1) above. This will motivate us to study vector spaces over the 'field' $\mathbb{C}$ instead of $\mathbb{R}$.
Let $[T]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, recall $p_{T}(\lambda)=\lambda^{2}+1$, has no roots $\lambda_{1} \in \mathbb{R}$.
However, we know $p_{T}(\lambda)=(\lambda+i)(\lambda-i)$, where $i^{2}=-1$.
Thus, if we allow $\mathbb{C}$ numbers, then we find $\lambda_{1}=i, \lambda_{2}=-i$.
Exercise: Find 'eigenvectors' $\mathbf{v} \in \operatorname{ker}\left(T-\lambda_{i} I\right)$ for $\lambda_{1}, \lambda_{2}$ above.
Warning: you need to use $\mathbf{v}=(a, b)$ for $a, b \in \mathbb{C}$ instead of just $\mathbb{R}$.
Solution: $\mathbf{v}=(1,-i) \in \operatorname{ker}(T-i I), \mathbf{v}=(1, i) \in \operatorname{ker}(T-(-i) I)$.
Thus, using $\mathbb{C}$ eigenvalues and eigenvectors, $[T]$ is diagonalizable.
This will turn out to always solve the issue (1) above, since:
Theorem: Let $p(\lambda)=a_{n} \lambda^{n}+\ldots+a_{1} \lambda+a_{0}$, with $a_{i} \in \mathbb{C}, a_{n} \neq 0$.
Then

$$
p(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}} \quad \text { for some } \lambda_{i} \in \mathbb{C}
$$

Note $m_{1}+\ldots+m_{k}=n$ always. Thus (1) is indeed resolved.

## Fields

Instead of just $\mathbb{C}$, we will generalize from $\mathbb{R}$ to any 'field':
Definition: A field is a set F together with two operations, called:
(A) Addition, which takes $a, b \in F$ and produce $a+b \in F$.
(B) Mult., which takes $a, b \in F$ and produces $a \odot b \in F$, such that

1. For all $a, b, c \in F,(a+b)+c=a+(b+c)$
2. For all $a, b \in F, a+b=b+a$.
3. There exists a unique element $0 \in F$ with the property that $a+0=a$ for all $a \in F$
4. For each $a \in F$, there exists a unique $-a \in F$ with the property that $a+(-a)=0$
5. For all $a, b, c \in F, a \odot(b \odot c)=(a \odot b) \odot c$
6. For all $a, b \in F, a \odot b=b \odot a$
7. For all $a, b, c \in F, a \odot(b+c)=a \odot b+a \odot c$
8. There exists a unique element $1 \in F$ with the property that $1 \odot a=a$ for all $a \in F$
9. For all non-zero $a \in F$, there exists a unique $a^{-1} \in F$ with the property that $a \odot\left(a^{-1}\right)=1$
Example: The sets $\mathbb{Q}, \mathbb{R}$ and $\mathbb{C}$ are fields. Exercise: $\mathbb{Z}$ is not.

## Vector Spaces over Fields

Definition A vector space over a field $F$ is a set $V$ together with:
(A) an operation called vector addition, which for each pair of vectors $\mathbf{x}, \mathbf{y} \in V$ produces another vector $\mathbf{x}+\mathbf{y}$ in $V$; and
(B) an operation called multiplication by a scalar, which for each vector $\mathbf{x} \in V$, and each scalar $c \in F$ produces another vector in $V$ denoted $c x$; such that

1. For all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V,(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$
2. For all vectors $\mathbf{x}, \mathbf{y} \in V, \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$
3. There exists a vector $\mathbf{0} \in V$ with the property that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for all vectors $\mathrm{x} \in V$
4. For each vector $\mathbf{x} \in V$, there exists a vector $-\mathbf{x} \in \mathbf{V}$ with the property that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$
5. For all vectors $\mathbf{x}, \mathbf{y} \in V$, and scalars $c \in F, c(\mathbf{x}+\mathbf{y})=c \mathbf{x}+c \mathbf{y}$
6. For all vectors $\mathbf{x} \in V$, and scalars $c, d \in F$, $(c+d) \mathbf{x}=c \mathbf{x}+d \mathbf{x}$
7. For all vectors $\mathbf{x} \in V$, and scalars $c, d \in F,(c d) \mathbf{x}=c(d \mathbf{x})$
8. For all vectors $\mathbf{x} \in V, 1 \mathbf{x}=\mathbf{x}$

## Linear algebra over arbitrary fields F

In sum, we just replace $\mathbb{R}$ by $F$ everywhere in the definition.
Examples: $F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\}$ is a $F$ vector space
$P_{n}(F)=\left\{a_{n} x^{n}+\ldots+a_{1} x+a_{0} \mid a_{i} \in F\right\}$ is a $F$ vector space
$M_{m \times n}(F)$, the set of matrices with entries in $F$, is a $F$ vector space
Fact: We can now literally repeat every definition and theorem from the course so far, replacing $\mathbb{R}$ by $F$, and they remain true.
Thus, you now know how to do linear algebra over any field $F$.
Now, let's go back to our motivation: simpler diagonalization.
Note $\mathbb{R} \subset \mathbb{C}$ so $M_{n \times n}(\mathbb{R}) \subset M_{n \times n}(\mathbb{C})$. Moreover, we have
Corollary: Let $V$ a $\mathbb{C}$ vector space of dimension $n$ and $T: V \rightarrow V$. Then $\quad p(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}} \quad$ for some $\lambda_{i} \in \mathbb{C}$.
Thus, $T$ is diagonalizable iff $\operatorname{dim} E_{\lambda_{i}}=m_{i}$ for each $i=1, \ldots, k$.
It remains to understand exactly when this works and how it fails.

## Triangularization

Definition $[A] \in M_{n \times n}(F)$ is called triangular if $a_{i j}=0$ for $i>j$.
Lemma: Let $A \in M_{k \times k}(F), B \in M_{(n-k) \times(n-k)}(F)$, and
$C \in M_{k \times(n-k)}(F)$. Then $\operatorname{det}\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]=\operatorname{det}(A) \operatorname{det}(B)$.
Corollary: If $A$ is triangular, then $\operatorname{det}(A)=a_{11} \ldots a_{n n}$.
Throughout, let $V$ an $F$ vector space and $T: V \rightarrow V$ linear.
Definition: A subspace $W \subset V$ is $T$-invariant if $T(W) \subset W$.
Proposition: Let $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ a basis for $V$. Then [ $\left.T\right]_{\alpha}^{\alpha}$ is triangular if and only $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots \mathbf{v}_{k}\right)$ is invariant for $k=1, \ldots, n$.
Now, suppose $p_{T}(\lambda)$ has $n$ roots. (e.g. always true over $F=\mathbb{C}$.)
Lemma: For any invariant subspace $W \subset V$, there exists $W \subset \tilde{W} \subset V$ with $\operatorname{dim} \tilde{W}=\operatorname{dim} W+1$ and $\tilde{W}$ invariant.
Theorem: Any $T: V \rightarrow V$ such that $p_{T}(\lambda)$ has $n$ roots is triangularizable.

