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Review: Diagonalization

Let V a finite dimensional vector space and T : V — V linear.
Fix a basis & = {v1,...,vp} for V. By definition, TFAE:

» [T]% is diagonal with a;; = A; for each i =1,...,n

» T(v;)=Ajv;foreachi=1,...n

P v; is an eigenvector with eigenvalue \; foreach i=1,....n
Definition: T is diagonalizeable if there exists such a basis «.
In sum: Diagonalizable iff there is a basis of eigenvectors.
Let Ey = {v € V|T(v) = Av} = ker(T — \I) the \-eigenspace.
We showed these spaces are mutually linearly independent, i.e.:
Proposition: For \; € R distinct, we have Ey, © ... ® E,, C V.
Thatis, Ex, N (3_;; Ex;) = {0} foreach j =1,.., k.

j
Corollary: We can adjoin the bases of all eigenspaces without

introducing any linear dependences.
This gives a basis for V of eigenvectors iff these actually span V.
Corollary: T is diagonalizeable iff V = Ey, @ ... ® E),.
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Review: Diagonalizability and the characteristic polynomial
When does V' = Ey, @ ... ® E), for A1,..., A« the eigenvalues for T7
Recall pr(X) =det(T — Al). Ey, # {0} iff \; a root of pr(A).

Now, suppose p1(A) = (A — A1)™...(A = Xg)™ - ()

where B()) has no roots. e.g. p(A\) = A% + 1.

Note that my + ... + m < n=dim V , with equality iff 5 = 1.
Proposition: For each i =1,..., k, we have 1 < dim Ey, < m;.
Theorem: T : V — V is diagonalizable if and only if

(1) my + ...+ me =n (Equivalently, pr(\) has n roots)

(2) dimEy, = m; for each i =1, ..., k.

How can these fail?

(1) pr(\) does not have n roots. e.g. [T] = [(1) _01}

(2) pr(A) has repeated roots, dim Ey, < m;. e.g. [T] = [)\1 1}

0 X\

Corollary: If pr(\) has n distinct roots, then T is diagonalizable.
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Complex Vector Spaces and Diagonalization

We'll now try to resolve the issue (1) above. This will motivate us
to study vector spaces over the ‘field’ C instead of R.

Let [T] = {(1) _01} , recall pr(A) = A2+ 1, has no roots \; € R.
However, we know pr()\) = (A + i)(A — i), where 2 = —1.
Thus, if we allow C numbers, then we find Ay = i, \p = —1/.

Exercise: Find ‘eigenvectors’ v € ker(T — A;l) for A1, Ap above.

Warning: you need to use v = (a, b) for a, b € C instead of just R.

Solution: v = (1, —/) € ker(T —il) , v =(1,i) € ker(T — (—i)I).
Thus, using C eigenvalues and eigenvectors, [T] is diagonalizable.
This will turn out to always solve the issue (1) above, since:
Theorem: Let p(A\) = ap\" + ... + a1\ + ap, with a; € C, a, # 0.
Then P(A) = (A — A1) ™A — Ag) ™« for some \; € C.

Note m; + ... + mx = n always. Thus (1) is indeed resolved.
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Fields

Instead of just C, we will generalize from R to any 'field":
Definition: A field is a set F together with two operations, called:
(A) Addition, which takes a,b € F and produce a+ b € F.

(B) Mult., which takes a, b € F and produces a® b € F, such that

1.

>

®© N O

Forall a,b,ce F, (a+b)+c=a+(b+¢)

2. Foralla,be F,a+ b= b+ a.
3.

There exists a unique element 0 € F with the property that
a+0=aforallaeF

For each a € F, there exists a unique —a € F with the
property that a+ (—a) =0

Forall a,b,ce F,a® (boc)=(a®b)O¢c

Foralla,be F,a®Gb=bOa

Foralla,b,ce F,a®(b+c)=aGb+abc

There exists a unique element 1 € F with the property that
loa=aforallaeF

For all non-zero a € F, there exists a unique a~! € F with the
property that a® (a71) =1

Example: The sets Q,R and C are fields. Exercise: Z is not.
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Vector Spaces over Fields
Definition A vector space over a field F is a set V together with:

(A)
(B)

an operation called vector addition, which for each pair of
vectors x,y € V produces another vector x +y in V; and

an operation called multiplication by a scalar, which for each
vector x € V/, and each scalar ¢ € F produces another vector
in V denoted cx; such that

For all vectors x,y,z€ V, (x+y)+z=x+(y + 2)

. For all vectors x,y € V, x+y=y+x

There exists a vector 0 € V with the property that x + 0 = x
for all vectors x € V

. For each vector x € V/, there exists a vector —x € V with the

property that x + (—x) =0

For all vectors x,y € V, and scalars c € F, c(x +y) = cx+cy
For all vectors x € V, and scalars ¢,d € F,

(c+d)x = cx + dx

For all vectors x € V/, and scalars ¢, d € F, (cd)x = c(dx)
For all vectors x € V, 1x = x
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Linear algebra over arbitrary fields F

In sum, we just replace R by F everywhere in the definition.
Examples: F" = {(x1,...,xn)|x; € F} is a F vector space

Pn(F) ={anx" + ...+ a1x + ao|a; € F} is a F vector space
Mpmxn(F), the set of matrices with entries in F, is a F vector space

Fact: We can now literally repeat every definition and theorem
from the course so far, replacing R by F, and they remain true.

Thus, you now know how to do linear algebra over any field F.
Now, let's go back to our motivation: simpler diagonalization.
Note R C C so Mpxn(R) C Mpyxn(C). Moreover, we have
Corollary: Let V a C vector space of dimensionnand T : V — V.
Then P(A) = (A — Ap)™ (N — Ag) Mk for some \; € C.
Thus, T is diagonalizable iff dim Ey, = m; for each i =1, ..., k.

It remains to understand exactly when this works and how it fails.
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Triangularization
Definition [A] € M,x,(F) is called triangular if ajj = 0 for i > j.
Lemma: Let A € kak(F), B e M(n—k)x(n—k)(F)v and
A C
0 B] = det(A) det(B).
Corollary: If A is triangular, then det(A) = a11...ann.

C € Mix(n—k)(F). Then det [

Throughout, let V an F vector space and T : V — V linear.
Definition: A subspace W C V' is T-invariant if T(W) C W.

Proposition: Let o = {v1,...,v,} a basis for V. Then [T]% is
triangular if and only Span(vy, ...vk) is invariant for k = 1,...,n.

Now, suppose p1(A) has n roots. (e.g. always true over F = C.)

Lemma: For any invariant subspace W C V/, there exists
W c W C V withdimW =dim W + 1 and W invariant.

Theorem: Any T : V — V such that pr()\) has n roots is
triangularizable.
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