Existence and Uniqueness Theorem

Elements of the Real Analysis

Definition 1. Let
(i) $C^{0}([a, b]):=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ be a space of continuous functions on $[a, b]$ with a norm $\|f\| \equiv \max _{[a, b]}|f(x)|$ and a distance $\operatorname{dist}(f, g) \equiv\|f-g\|=\max _{[a, b]}|f(x)-g(x)|, f, g \in C^{0}([a, b])$;
(ii) $C^{1}([a, b]):=\{f:[a, b] \rightarrow \mathbb{R} \mid d f / d x$ exists and it is continuous $\}$ be a space of continuously differentiable functions on $[a, b]$;
(iii) A Cauchy sequence in a metric space (i.e. a set with a distance satisfying triangle inequality and such that $\operatorname{dist}(f, g)=\operatorname{dist}(g, f)$ and $\operatorname{dist}(f, g)=$ $0 \Longleftrightarrow f=g)$ is a sequence $\left\{f_{n}\right\}_{n \geq 1}$ such that

$$
\lim _{n, m \rightarrow \infty} \operatorname{dist}\left(f_{n}, g_{m}\right)=0
$$

$\left(C^{0}([a, b])\right.$ is an example of a metric space);
(iv) A complete metric space is a metric space such that for every Cauchy sequence $\left\{f_{n}\right\}_{n \geq 1}$, there exists a point $f:=\lim _{n \rightarrow \infty} f_{n}$, in that space such that

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(f_{n}, g\right)=0
$$

Cauchy theorem from 1st year Calculus says that the real numbers form a complete metric space.

Theorem 2. $C^{0}([a, b])$ is complete (with respect to $\operatorname{dist}(f, g)$).
Proof. Assume $\left\{g_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in $C^{0}([a, b])$. This implies that $\left\{g_{n}(x)\right\}_{n \geq 1}$ is a Cauchy sequence in \mathbb{R}, for any $x \in[a, b]$. By Cauchy's theorem, this last sequence converges to a number, which we denote with $g(x)$. We obtain in this way a function g defined on $[a, b]$. Moreover,

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(g_{n} ; g\right)=0
$$

since for any $\epsilon>0$, there is N such that if $m, n \geq N$,

$$
\left|g_{n}(x)-g_{m}(x)\right|<\epsilon / 2 \text { for all } x \in[a, b] .
$$

Taking the limit for $m \rightarrow \infty$ one obtains

$$
\left|g_{n}(x)-g(x)\right| \leq \epsilon / 2<\epsilon \text { for all } x \in[a, b] .
$$

Finally, g is continuous: Given $\epsilon>0$, take N for which

$$
\left|g_{n}(x)-g(x)\right|<\epsilon / 3, \quad n \geq N, \text { for all } x \in[a, b] .
$$

Select $n \geq N$ as above. Since $g_{n}(x)$ is continuous, one has that for any $x, y \in[a, b], 0<|x-y|<\delta$,

$$
\left|g_{n}(x)-g_{n}(y)\right|<\epsilon / 3
$$

for an appropriate $\delta=\delta(\epsilon / 3)>0$. It follows immediately that

$$
|g(x)-g(y)|<\epsilon
$$

for $0<|x-y|<\delta, x, y \in[a, b]$, and hence g is continuous.
Lemma 3. Let $f(x, y)$ be a function with $\frac{\partial f}{\partial y}$ continuous. Put

$$
\nabla f\left(x, y_{1}, y_{2}\right):=\frac{f\left(x, y_{1}\right)-f\left(x, y_{2}\right)}{y_{1}-y_{2}}=\int_{0}^{1} \frac{\partial f}{\partial y}\left(x, s y_{1}+(1-s) y_{2}\right) d s
$$

(It follows from $h\left(y_{1}\right)-h\left(y_{2}\right)=\int_{y_{1}}^{y_{2}} h^{\prime}(t) d t$ by a change of variable $t=$ $\left.s y_{1}+(1-s) y_{2}.\right)$

Denote

$$
B=\max _{|x|,|y| \leq b}\left|\frac{\partial f}{\partial y}(x, y)\right| .
$$

Then

$$
\nabla f\left(x, y_{1}, y_{2}\right) \leq B \text { for all }|x|,\left|y_{1}\right|,\left|y_{2}\right| \leq b .
$$

Proof. Show this yourself! It is easy!

Existence and Uniqueness theorem

Theorem 4. Let $f(x, y)$ be continuos and $\frac{\partial f}{\partial y}$ exist and be bounded in the "box" $|x-\bar{x}| \leq b,|y-\bar{y}| \leq b$. Then Cauchy problem

$$
\begin{align*}
& y^{\prime}=f(x, y), \tag{1}\\
& y(\bar{x})=\bar{y} \tag{2}
\end{align*}
$$

has a unique solution $y=y(x)$ on interval $\left(\bar{x}-a^{\prime}, \bar{x}+a^{\prime}\right)$ with sufficiently small $a^{\prime}>0$.

Proof. Denote

$$
A=\max _{|x-\bar{x}|,|y-\bar{y}| \leq b}|f(x, y)| \quad B=\max _{|x-\bar{x}|,|y-\bar{y}| \leq b}\left|\frac{\partial f}{\partial y}(x, y)\right|
$$

and let us redefine $a=a^{\prime}=\min \{b / A, 1 / 2 B\}$ (so that $a \cdot A \leq b$ and $a \cdot B \leq$ $1 / 2)$.
(i) First of all we claim that (1)-(2) is equivalent to a single integral equation

$$
\begin{equation*}
y(x)=I(y)(x):=\bar{y}+\int_{\bar{x}}^{x} f(s, y(s)) d s \tag{3}
\end{equation*}
$$

Really, if y satisfies (1)-(2) then integrating (1) from \bar{x} to x we arrive to $y(x)-y(\bar{x})=I(y)(x)$ and using (2) we arrive to (3). Conversely if y satisfies (3) then $y \in C^{1}(\bar{x}-a, \bar{x}+a)$ (because $I(y)$ is a continuously differentiable) and differentiating (3) we arrive to (1); plugging $x=\bar{x}$ into (3) we arrive to (1).
(ii) Note that for any $y, z \in C^{0}([\bar{x}-a, \bar{x}+a])$ such that $|y(x)-\bar{y}| \leq b$, $|z(x)-\bar{y}| \leq b$ we have $\operatorname{dist}(y, z) \leq 2 b$.
(iii) $I(y)$ defined above is a contraction, that is

$$
\begin{equation*}
\operatorname{dist}(I(y), I(z)) \leq q \operatorname{dist}(y, z) \tag{4}
\end{equation*}
$$

for some $q<1$. In fact, due to the lemma 3.

$$
|I(y)(x)-I(z)(x)|=\left|\int_{\bar{x}}^{x} \nabla f(s, y(s), z(s))(y(s)-z(s)) d s\right| \leq a B \cdot \operatorname{dist}(y, z)
$$

and, since $a B \leq 1 / 2$, we can take $q=1 / 2$.
Remark 1. It follows from (iii) that $I\left(g_{i}\right)=g_{i}$ for $i=1,2$ implies $g_{1}=g_{2}$. Show this yourself. This proves uniqueness.
(iv) Any sequence composed of $y_{0} \in C^{0}([\bar{x}-a, \bar{x}+a])$ with $\| y(x)-\bar{y} \leq b$ (for instance $y_{0} \equiv 0$), $y_{n}:=I\left(y_{n-1}\right), n \geq 1$, is a Cauchy sequence: indeed, because $q=1 / 2$,

$$
\lim _{n \rightarrow \infty} q^{n}=0
$$

Take $n(\epsilon)$ such that $q^{n}<\epsilon / 2 b$ for all $n \geq n(\epsilon)$. Let $m \geq n \geq n(\epsilon)$. Then

$$
\operatorname{dist}\left(g_{m}, g_{n}\right)=\left\|I^{n}\left(y_{m-n}-y_{0}\right)\right\| \leq q^{n}\left\|y_{m-n}-y_{0}\right\| \leq q^{n} 2 b<(\epsilon / 2 b) \cdot 2 b=\epsilon
$$

(v) By making use of theorem 2, there exists $y \in C^{0}([-a, a])$ such that $\lim _{n \rightarrow \infty} \operatorname{dist}\left(y_{n}, y\right)=0$, and hence $|y(x)-\bar{y}| \leq b$ for $\left|x-x_{0}\right| \leq a$.

Since

$$
\begin{aligned}
& \operatorname{dist}(y, I(y)) \leq \operatorname{dist}\left(y, y_{n}\right)+\operatorname{dist}\left(y_{n}, I(y)\right) \\
& \quad=\operatorname{dist}\left(y, y_{n}\right)+\operatorname{dist}\left(I\left(y_{n-1}\right), I(y)\right) \leq \operatorname{dist}\left(y, y_{n}\right)+\frac{1}{2} \operatorname{dist}\left(y_{n-1}, y\right)
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{dist}\left(y, y_{n}\right)=0=\lim _{n \rightarrow \infty} \operatorname{dist}\left(y_{n-1}, y\right)
$$

it follows $\operatorname{dist}(y, I(y))=0$, i.e. $y=I(y)$.

Existence theorem

One can prove
Theorem 5. Let $f(x, y)$ be continuos in the "box" $|x-\bar{x}| \leq b,|y-\bar{y}| \leq b$. Then Cauchy problem (1)-(2) has a solution $y=y(x)$ on interval $\left(\bar{x}-a^{\prime}, \bar{x}+\right.$ $\left.a^{\prime}\right)$ with sufficiently small $a^{\prime}>0$.

Sketch of the proof. Consider Euler approximations with the step h :

$$
\begin{equation*}
y_{h, n+1}=y_{h, n}+f\left(x_{n}, y_{h, n}\right) h, \quad x_{n}=\bar{x}+n h, \quad y_{h, 0}=\bar{y} \tag{5}
\end{equation*}
$$

and on "step" intervals $\left(x_{n}, x_{n+1}\right)$ we apply a linear approximation $y_{h}(x)=$ $y_{h, n}+f\left(x_{n}, y_{h, n}\right)\left(x-x_{n}\right)$. Here we take $n=0,1,2, \ldots$ but we can go also in the opposite direction (replacing h by $-h$). So, we get a piecewise linear function $y_{h}(x)$.

One can prove that
(a) Functions $y_{h}(x)$ are defined on interval $[\bar{x}-a, \bar{x}+a]$ with a redefined as $a^{\prime}=\min (a, b / A)$ (see proof of theorem 4) and are uniformly bounded there: $\left|y_{h}(x)-\bar{y}\right| \leq b ;$
(b) Functions $y_{h}(x)$ are uniformly continuous i.e. for each $\epsilon>0$ there exists $\delta>0$ such that $\left|x-x^{\prime}\right|<\delta \Longrightarrow\left|y_{h}(x)-y_{h}\left(x^{\prime}\right)\right|<\epsilon$; indeed, $\delta=\epsilon / A$ works. "Uniformly" here and above means that bound and δ do not depend on h;
(c) $\left|y_{h}(x)-I\left(y_{h}\right)(x)\right| \leq \varepsilon_{h}$ for all $x \in[\bar{x}-a, \bar{x}+a]$ with $\varepsilon_{h} \rightarrow 0$ as $h \rightarrow 0$.

Let us take $h_{m}=2^{-m} \rightarrow+0$ as $m \rightarrow \infty$.
Now we apply Arzelá-Ascoli theorem from Real Analysis:
Theorem 6. From sequence of functions $y_{h_{m}}(x)$ satisfying (a)-(b) one can select a subsequence $y_{h_{m_{k}}}(x)$ converging in $C([\bar{x}-a, \bar{x}+a]): y_{h_{m_{k}}}(x) \rightarrow y(x)$. Since step $h_{m_{k}} \rightarrow 0$ the limit is by no means piecewise linear!

Then obviously $I\left(y_{h_{m_{k}}}\right) \rightarrow I(y)$. Further, (c) implies that $y=I(y)$ and therefore y satisfies (3) and thus it satisfies (11)-(2).

Remark 7. (i) In contrast to theorem 4 theorem 6 does not imply uniqueness of solution; indeed, example $y^{\prime}=y^{\frac{1}{3}}$ analyzed in the lectures shows the lack of uniqueness;
(ii) Both theorems 4 and 6 are based on fixed point equation $y=I(y)$ but existence of the fixed point y is due to different ideas: in theorem 4 it exists and is unique because map $y \rightarrow I(y)$ is contractive; in theorem 6 it exists (but is not necessarily unique) because map $y \rightarrow I(y)$ is compact (we did not define this notion).

