
Existence and Uniqueness Theorem

Elements of the Real Analysis

Definition 1. Let

(i) C0([a, b]) := {f : [a, b] → R | f is continuous} be a space of contin-
uous functions on [a, b] with a norm ‖f‖ ≡ max[a,b] |f(x)| and a distance
dist(f, g) ≡ ‖f − g‖ = max[a,b] |f(x)− g(x)|, f, g ∈ C0([a, b]);

(ii) C1([a, b]) := {f : [a, b] → R | df/dx exists and it is continuous} be a
space of continuously differentiable functions on [a, b];

(iii) A Cauchy sequence in a metric space (i.e. a set with a distance satisfy-
ing triangle inequality and such that dist(f, g) = dist(g, f) and dist(f, g) =
0 ⇐⇒ f = g) is a sequence {fn}n≥1 such that

lim
n,m→∞

dist(fn, gm) = 0.

(C0([a, b]) is an example of a metric space);

(iv) A complete metric space is a metric space such that for every Cauchy
sequence {fn}n≥1, there exists a point f := limn→∞ fn, in that space such
that

lim
n→∞

dist(fn, g) = 0.

Cauchy theorem from 1st year Calculus says that the real numbers form a
complete metric space.

Theorem 2. C0([a, b]) is complete (with respect to dist(f, g)).

Proof. Assume {gn}n≥1 is a Cauchy sequence in C0([a, b]). This implies that
{gn(x)}n≥1 is a Cauchy sequence in R, for any x ∈ [a, b]. By Cauchy’s
theorem, this last sequence converges to a number, which we denote with
g(x). We obtain in this way a function g defined on [a, b]. Moreover,

lim
n→∞

dist(gn; g) = 0

since for any ε > 0, there is N such that if m,n ≥ N ,

|gn(x)− gm(x)| < ε/2 for all x ∈ [a, b].
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Taking the limit for m→∞ one obtains

|gn(x)− g(x)| ≤ ε/2 < ε for all x ∈ [a, b].

Finally, g is continuous: Given ε > 0, take N for which

|gn(x)− g(x)| < ε/3, n ≥ N, for all x ∈ [a, b].

Select n ≥ N as above. Since gn(x) is continuous, one has that for any
x, y ∈ [a, b], 0 < |x− y| < δ,

|gn(x)− gn(y)| < ε/3

for an appropriate δ = δ(ε/3) > 0. It follows immediately that

|g(x)− g(y)| < ε

for 0 < |x− y| < δ, x, y ∈ [a, b], and hence g is continuous.

Lemma 3. Let f(x, y) be a function with ∂f
∂y

continuous. Put

∇f(x, y1, y2) :=
f(x, y1)− f(x, y2)

y1 − y2

=

∫ 1

0

∂f

∂y
(x, sy1 + (1− s)y2)ds.

(It follows from h(y1) − h(y2) =
∫ y2
y1
h′(t)dt by a change of variable t =

sy1 + (1− s)y2.)

Denote

B = max
|x|,|y|≤b

∣∣∣∣∂f∂y (x, y)

∣∣∣∣ .
Then

∇f(x, y1, y2) ≤ B for all |x|, |y1|, |y2| ≤ b.

Proof. Show this yourself! It is easy!

Existence and Uniqueness theorem

Theorem 4. Let f(x, y) be continuos and ∂f
∂y

exist and be bounded in the

“box” |x− x̄| ≤ b, |y − ȳ| ≤ b. Then Cauchy problem

y′ = f(x, y), (1)

y(x̄) = ȳ (2)

has a unique solution y = y(x) on interval (x̄ − a′, x̄ + a′) with sufficiently
small a′ > 0.
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Proof. Denote

A = max
|x−x̄|,|y−ȳ|≤b

|f(x, y)| B = max
|x−x̄|,|y−ȳ|≤b

∣∣∣∣∂f∂y (x, y)

∣∣∣∣
and let us redefine a = a′ = min{b/A, 1/2B} (so that a · A ≤ b and a · B ≤
1/2).

(i) First of all we claim that (1)–(2) is equivalent to a single integral equation

y(x) = I(y)(x) := ȳ +

∫ x

x̄

f(s, y(s))ds. (3)

Really, if y satisfies (1)–(2) then integrating (1) from x̄ to x we arrive to
y(x)− y(x̄) = I(y)(x) and using (2) we arrive to (3). Conversely if y satisfies
(3) then y ∈ C1(x̄− a, x̄ + a) (because I(y) is a continuously differentiable)
and differentiating (3) we arrive to (1); plugging x = x̄ into (3) we arrive to
(1).

(ii) Note that for any y, z ∈ C0([x̄ − a, x̄ + a]) such that |y(x) − ȳ| ≤ b,
|z(x)− ȳ| ≤ b we have dist(y, z) ≤ 2b.

(iii) I(y) defined above is a contraction, that is

dist(I(y), I(z)) ≤ q dist(y, z) (4)

for some q < 1. In fact, due to the lemma 3:

|I(y)(x)− I(z)(x)| = |
∫ x

x̄

∇f(s, y(s), z(s))(y(s)− z(s))ds| ≤ aB · dist(y, z)

and, since aB ≤ 1/2, we can take q = 1/2.

Remark 1. It follows from (iii) that I(gi) = gi for i = 1, 2 implies g1 = g2.
Show this yourself. This proves uniqueness.

(iv) Any sequence composed of y0 ∈ C0([x̄ − a, x̄ + a]) with ‖y(x) − ȳ ≤ b
(for instance y0 ≡ 0), yn := I(yn−1), n ≥ 1, is a Cauchy sequence: indeed,
because q = 1/2,

lim
n→∞

qn = 0

Take n(ε) such that qn < ε/2b for all n ≥ n(ε). Let m ≥ n ≥ n(ε). Then

dist(gm, gn) = ‖In(ym−n − y0)‖ ≤ qn‖ym−n − y0‖ ≤ qn2b < (ε/2b) · 2b = ε.
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(v) By making use of theorem 2, there exists y ∈ C0([−a, a]) such that
limn→∞ dist(yn, y) = 0, and hence |y(x)− ȳ| ≤ b for |x− x0| ≤ a.

Since

dist(y, I(y)) ≤ dist(y, yn) + dist(yn, I(y))

= dist(y, yn) + dist(I(yn−1), I(y)) ≤ dist(y, yn) +
1

2
dist(yn−1, y)

and
lim
n→∞

dist(y, yn) = 0 = lim
n→∞

dist(yn−1, y),

it follows dist(y, I(y)) = 0, i.e. y = I(y).

Existence theorem

One can prove

Theorem 5. Let f(x, y) be continuos in the “box” |x − x̄| ≤ b, |y − ȳ| ≤ b.
Then Cauchy problem (1)–(2) has a solution y = y(x) on interval (x̄−a′, x̄+
a′) with sufficiently small a′ > 0.

Sketch of the proof. Consider Euler approximations with the step h:

yh,n+1 = yh,n + f(xn, yh,n)h, xn = x̄+ nh, yh,0 = ȳ (5)

and on “step” intervals (xn, xn+1) we apply a linear approximation yh(x) =
yh,n + f(xn, yh,n)(x − xn). Here we take n = 0, 1, 2, . . . but we can go also
in the opposite direction (replacing h by −h). So, we get a piecewise linear
function yh(x).

One can prove that

(a) Functions yh(x) are defined on interval [x̄− a, x̄+ a] with a redefined as
a′ = min(a, b/A) (see proof of theorem 4) and are uniformly bounded there:
|yh(x)− ȳ| ≤ b;

(b) Functions yh(x) are uniformly continuous i.e. for each ε > 0 there exists
δ > 0 such that |x−x′| < δ =⇒ |yh(x)−yh(x′)| < ε; indeed, δ = ε/A works.
“Uniformly” here and above means that bound and δ do not depend on h;
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(c) |yh(x)− I(yh)(x)| ≤ εh for all x ∈ [x̄− a, x̄+ a] with εh → 0 as h→ 0.

Let us take hm = 2−m → +0 as m→∞.
Now we apply Arzelá–Ascoli theorem from Real Analysis:

Theorem 6. From sequence of functions yhm(x) satisfying (a)–(b) one can
select a subsequence yhmk

(x) converging in C([x̄−a, x̄+a]): yhmk
(x)→ y(x).

Since step hmk
→ 0 the limit is by no means piecewise linear!

Then obviously I(yhmk
) → I(y). Further, (c) implies that y = I(y) and

therefore y satisfies (3) and thus it satisfies (1)–(2).

Remark 7. (i) In contrast to theorem 4 theorem 6 does not imply uniqueness

of solution; indeed, example y′ = y
1
3 analyzed in the lectures shows the lack

of uniqueness;

(ii) Both theorems 4 and 6 are based on fixed point equation y = I(y) but
existence of the fixed point y is due to different ideas: in theorem 4 it exists
and is unique because map y → I(y) is contractive; in theorem 6 it exists
(but is not necessarily unique) because map y → I(y) is compact (we did
not define this notion).
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