APM 346 - Final Exam Practice Problems.

Richard Derryberry

April 8, 2019
(Problems are mostly taken from or variants of problems from [IvrXX] or [Str08.)

1 Introductory explicitly solvable problems

Problem 1. Solve the equation $5 u_{y}+u_{x y}=0$.
Problem 2. Solve the equation $u_{x y}-4 u_{x}=e^{x+5 y}$.
Problem 3. Solve the equation $u_{x y}=u_{x} u_{y}$.

Problem 4. Solve the system of equations

$$
\begin{aligned}
& u_{x y}=0 \\
& u_{y z}=0 \\
& u_{z x}=1
\end{aligned}
$$

Solution. Integrate $u_{x y}=0$ to obtain $u_{y}=f(y, z)$. The second equation gives $0=f_{z}$, so in fact $u_{y}=f(y)$. Hence $u(x, y, z)=F(y)+G(x, z)$. Now,

$$
1=u_{z x}=G_{x z}
$$

So $G_{x}(x, z)=z+h(x)$, and $G(x, z)=x z+H(x)+A(z)$. Putting it all together (and renaming the arbitrary functions in the solution) we have

$$
u(x, y, z)=x z+f(x)+g(y)+h(z)
$$

2 Method of characteristics

Problem 5. Solve the problem

$$
\begin{aligned}
2 u_{t}+3 u_{x} & =0 \\
u(x, 0) & =\sin (x)
\end{aligned}
$$

and sketch the characteristic curves.

Problem 6. Solve the problem

$$
\begin{aligned}
u_{x}+u_{y}+u & =e^{x+2 y}, \\
u(x, 0) & =0,
\end{aligned}
$$

and sketch the characteristic curves.

Solution. First, let's convert this into a homogeneous linear problem. Let $p(x, y)=A e^{x+2 y}$, so that

$$
\begin{aligned}
p_{x} & =p, \\
p_{y} & =2 p, \\
p_{x}+p_{y}+p & =4 A e^{x+2 y} .
\end{aligned}
$$

Then p is a particular solution to our equation if $A=\frac{1}{4}$. Now, let's find the general solution to the homogeneous problem

$$
v_{x}+v_{y}=-v .
$$

The characteristic curves are given by

$$
x-y=C
$$

for C constant (I believe y'all can sketch these particular characteristic curves). These can be parametrised by $\gamma(s)=(x(s), y(s))=(s+C, s)$, and the corresponding ODE to solve along the characteristic curves is

$$
\frac{d v}{d s}=-v \quad \Rightarrow \quad v(\gamma(s))=A e^{-s}
$$

where A is constant along $\gamma(s)$. I.e. the general solution to the homogeneous problem is $v(x, y)=\phi(x-y) e^{-y}$ for an arbitrary function ϕ.

So the general solution to the inhomogeneous problem is

$$
u(x, y)=\phi(x-y) e^{-y}+\frac{1}{4} e^{x+2 y}
$$

and applying the $B C$ at $y=0$ gives

$$
0=\phi(x)+\frac{1}{4} e^{x}
$$

so that $\phi(x)=-\frac{1}{4} e^{x}$. Putting this together gives

$$
u(x, y)=\frac{1}{4} e^{x+2 y}-\frac{1}{4} e^{x-y} e^{-y}=\frac{e^{x}}{2} \sinh (2 y)
$$

Problem 7. Find the general solution to the equation

$$
\left(1+t^{2}\right) u_{t}+u_{x}=0
$$

and sketch the characteristic curves.
Problem 8. Solve the problem

$$
\begin{aligned}
u_{t}+t x u_{x} & =0 \\
u(x, 0) & =\frac{1}{1+x^{2}}
\end{aligned}
$$

and sketch the characteristic curves.
Problem 9. Solve the problem

$$
\begin{aligned}
u_{t}+t^{2} u_{x} & =0 \\
u(x, 0) & =e^{x}
\end{aligned}
$$

and sketch the characteristic curves.
Problem 10. Find the general solution to the equation

$$
x u_{x}+y u_{y}=0,
$$

and sketch the characteristic curves.

Problem 11. Solve the problem

$$
\begin{aligned}
\sqrt{1-x^{2}} u_{x}+u_{y} & =0 \\
u(0, y) & =y
\end{aligned}
$$

and sketch the characteristic curves.
Problem 12. Solve the problem

$$
\begin{aligned}
u_{t}+x u_{x} & =x \\
u(x, 0) & =-x
\end{aligned}
$$

and sketch the characteristic curves.

3 The wave equation

Problem 13. Solve the IVP

$$
\begin{aligned}
u_{t t}-u_{x x} & =0 \\
\left.u\right|_{t=0} & = \begin{cases}1, & x<0 \\
0, & x>0\end{cases} \\
\left.u_{t}\right|_{t=0} & = \begin{cases}0, & x<0 \\
1, & x>0\end{cases}
\end{aligned}
$$

Solution. Let's assume $t \geq 0$ (if not we just have to care about a couple of extra regions). We can apply D'Alembert's formula

$$
u(x, t)=\frac{g(x+t)+g(x-t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} h(s) d s
$$

where $g(x)=u(x, 0)$ and $h(x)=u_{t}(x, 0)$. Then the solution is piecewise defined over three regions:

- $x<-t$: I.e. $x+t<0$. In this region the $h(s)$ integral does not contribute, and we have

$$
u(x, t)=\frac{1+1}{2}+0=1
$$

- $|x|<t$: Then $g(x-t)=0$ and $g(x+t)=1$, so we have

$$
u(x, t)=\frac{1}{2}+\frac{1}{2} \int_{0}^{x+t} d s=\frac{1}{2}+\frac{1}{2}(x+t)
$$

- $x>t$: Then $g(x \pm t)=0$ and the solution is

$$
u(x, t)=\frac{1}{2} \int_{x-t}^{x+t} d s=\frac{(x+t)-(x-t)}{2}=t
$$

Problem 14. Solve the IVP

$$
\begin{aligned}
u_{t t}-3 u_{x x} & =0, \\
\left.u\right|_{t=0} & =e^{x}, \\
\left.u_{t}\right|_{t=0} & =\sin (x) .
\end{aligned}
$$

Problem 15. Solve the IVP

$$
\begin{aligned}
u_{t t}-u_{x x} & =x t \\
u(x, 0) & =0 \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Problem 16. Solve the $\operatorname{IBVP}(x, t>0)$

$$
\begin{aligned}
u_{t t}-u_{x x} & =0 \\
u(x, 0) & =\sin (x) \\
u_{t}(x, 0) & =0 \\
u_{x}(0, t) & =0
\end{aligned}
$$

Problem 17. Determine $\left.u\right|_{(x, t)=(50.1,12)}$ when u is a solution to the problem

$$
\begin{aligned}
u_{t t}-\pi^{2} u_{x x} & =0 \\
\left.u\right|_{t=0} & = \begin{cases}e^{-\frac{x^{2}}{7}}, & x<3 \\
0, & x>3\end{cases} \\
\left.u_{t}\right|_{t=0} & =0
\end{aligned}
$$

Problem 18. Suppose that $u(x, y, z, t)$ solves the wave equation $u_{t t}=c^{2} \Delta u$ on the bounded domain Ω, with homogeneous Dirichlet boundary conditions on $\partial \Omega$. Prove that the energy of u

$$
E_{\Omega}(t):=\frac{1}{2} \iiint_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x d y d z
$$

is conserved.

Problem 19. Suppose that $u(x, y, z, t)$ solves the wave equation $u_{t t}=c^{2} \Delta u$ on the bounded domain Ω, with homogeneous Neumann boundary conditions on $\partial \Omega$. Prove that the energy of u

$$
E_{\Omega}(t):=\frac{1}{2} \iiint_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x d y d z
$$

is conserved.
Solution. Homogeneous Neumann BCs means that the normal derivative $\frac{\partial u}{\partial \nu}$ along the boundary $\partial \Omega$ vanishes identically. So we calculate:

$$
\begin{aligned}
\frac{d E_{\Omega}}{d t} & =\frac{1}{2} \iiint_{\Omega}\left(2 u_{t} u_{t t}+2 c^{2} \nabla u_{t} \cdot \nabla u\right) d^{3} \vec{x}=c^{2} \iiint_{\Omega}\left(u_{t} \Delta u+\nabla u_{t} \cdot \nabla u\right) d^{3} \vec{x} \\
& =c^{2} \iiint_{\Omega} \nabla \cdot\left(u_{t} \nabla u\right) d^{3} \vec{x}=c^{2} \iint_{\partial \Omega} u_{t} \nabla u \cdot \nu d v o l_{\partial \Omega}=c^{2} \iint_{\partial \Omega} u_{t} \frac{\partial u}{\partial \nu} d v o l_{\partial \Omega}=0 .
\end{aligned}
$$

Problem 20. Suppose that $u(x, y, z, t)$ solves the wave equation $u_{t t}=c^{2} \Delta u$ on the bounded domain Ω, with boundary conditions $\frac{\partial u}{\partial \nu}=\frac{\partial u}{\partial t}$ on $\partial \Omega$ (where ν is the outward pointing normal vector field on $\partial \Omega$). Is the energy of u

$$
E_{\Omega}(t):=\frac{1}{2} \iiint_{\Omega}\left(u_{t}^{2}+c^{2}|\nabla u|^{2}\right) d x d y d z
$$

increasing, decreasing, or constant?
Problem 21. Where does a solution $u(x, y, z, t)$ to the homogeneous wave equation have to vanish if its initial data vanishes outside of the unit ball $\left\{\vec{x} \in \mathbb{R}^{3} \mid\|x\| \leq 1\right\}$?

4 The heat equation

Problem 22. Solve the heat equation IVP

$$
\begin{aligned}
u_{t}-u_{x x} & =0 \\
u(x, 0) & = \begin{cases}1, & |x|<1 \\
0, & |x|>1\end{cases}
\end{aligned}
$$

Express your answer in terms of the error function

$$
\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z
$$

Problem 23. Solve the heat equation IVP

$$
\begin{array}{rlrl}
4 u_{t}-u_{x x} & =0 \\
u(x, 0) & =e^{-x} & -\infty<x, t<\infty
\end{array}
$$

Problem 24. Suppose that u is a solution to the $1 d$ heat equation on $(0,1)$, satisfying the boundary conditions

$$
\begin{aligned}
u_{x}(0, t)-u(0, t) & =0 \\
u_{x}(1, t) & =0
\end{aligned}
$$

Show that the function

$$
E(t)=\int_{0}^{1} u(x, t)^{2} d x
$$

is nonincreasing, and that it decreases unless $u(x, t)$ is identically zero.
Problem 25. Suppose that u is a solution to the $1 d$ heat equation $u_{t}=u_{x x}$ on $\{0<x<1,0<t<\infty\}$, with homogeneous Dirichlet boundary conditions and initial condition

$$
u(x, 0)=4 x(1-x)
$$

Prove that $0<u(x, t)<1$ for all $t>0$ and all $0<x<1$.
Solution. The (strong) maximum/minimum principles tell us that the max/min of the solution u must occur either at the endpoints $x=0,1$ or at time $t=0$, and moreover that if the max/min occurs anywhere in the interior $0<x<1, t>0$, then the function must be constant. The non-constant IC tells us that our solution is not constant - hence it suffices to show that at the endpoints at at time zero, the function takes minimum 0 and maximum 1.

The endpoints are held constant at $u(0, t)=u(1, t)=0$, and the function $g(x)=u(x, 0)=4 x(1-x)$ is ≥ 0, so $\min u=0$. Further,

$$
g^{\prime}(x)=4-8 x=0 \quad \Rightarrow \quad x=\frac{1}{2}
$$

so that $x=\frac{1}{2}$ is the only interior critical point; since $g^{\prime \prime}=-8<0$ this critical point is a maximum, and $g(1 / 2)=2\left(1-\frac{1}{2}\right)=1$.

Problem 26. Suppose that u is a solution to the $1 d$ heat equation $u_{t}=u_{x x}$ on $\{0<x<1,0<t<\infty\}$, with homogeneous Dirichlet boundary conditions and initial condition

$$
u(x, 0)=1-x^{2}
$$

(a) Prove that $u(x, t)$ is strictly positive for all $t>0$ and $0<x<1$.
(b) Prove that

$$
\mu(t):=\max _{0 \leq x \leq 1} u(x, t)
$$

is a decreasing function of t.

5 Fourier series

Problem 27. Determine the real Fourier series representation of $\sin \left(\frac{x}{2}\right)$ on the interval $(-\pi, \pi)$.
Problem 28. Determine the real Fourier series representation of $\sinh (x)$ on the interval $(-\pi, \pi)$.
Problem 29. Determine the complex Fourier series representation of $e^{\alpha x}$ on the interval $(-\pi, \pi)$, for $\alpha \in \mathbb{C}$. Which values of α are "exceptional"?

Solution. The Fourier coefficients are given by

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\alpha x} e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(\alpha-i n) x} d x \\
& =\frac{(-1)^{n}}{2 \pi(\alpha-i n)}\left(e^{\alpha \pi}-e^{-\alpha \pi}\right)
\end{aligned}
$$

provided $\alpha \neq$ in for any $n \in \mathbb{Z}$ (the "exceptional" values). So

$$
e^{\alpha x}=\sum_{n \in \mathbb{Z}} \frac{(-1)^{n}}{2 \pi(\alpha-i n)}\left(e^{\alpha \pi}-e^{-\alpha \pi}\right) e^{i n x}
$$

Problem 30. Determine the real Fourier series representation of $|x|$ on the interval $(-1,1)$.
Problem 31. Determine the sine Fourier series representation of $x(\pi-x)$ on the interval $(0, \pi)$.
Problem 32. Determine the sine Fourier series representation of x^{2} on the interval $(0,1)$.
Problem 33. Determine the sine Fourier series representation of 1 on the interval $(0, \pi)$.
Problem 34. Determine the cosine Fourier series representation of 1 on the interval $(0, \pi)$.
Problem 35. Determine the cosine Fourier series representation of x on the interval $(0,1)$.
Problem 36. Determine the cosine Fourier series representation of x^{2} on the interval $(0,1)$.

6 Separation of variables

Problem 37. Using the method of separation of variables, solve the following problem:

$$
\begin{array}{rlr}
u_{t t}-u_{x x} & =0, & -\pi<x<\pi, \\
u(-\pi, t) & =0, \\
u(\pi, t) & =0 \\
u(x, 0) & =\sinh (x), \\
u_{t}(x, 0) & =0 . &
\end{array}
$$

Solution. Looking for a separated solution $u(x, t)=X(x) T(t)$ gives the system of equations

$$
\begin{array}{r}
X^{\prime \prime}+\lambda X=0 \\
T^{\prime \prime}+\lambda T=0 \\
X(-\pi)=X(\pi)=0
\end{array}
$$

We have homogeneous Dirichlet BCs on both ends, so there are no solutions for $\lambda<0$ or $\lambda=0$. For $\lambda=\omega^{2}>0, \omega>0$, we find

$$
\begin{aligned}
X(x) & =A \cos (\omega x)+B \sin (\omega x) \\
X(\pi) & =A \cos (\omega \pi)+B \sin (\omega \pi)=0 \\
X(-\pi) & =A \cos (\omega \pi)-B \sin (\omega \pi)=0
\end{aligned}
$$

The ICs are odd, so we may take $A=0$ and look for solutions to

$$
\sin (\omega \pi)=0
$$

These are given by $\omega=n \in \mathbb{Z}_{>0}$, i.e. $n=1,2,3, \ldots$ Using these eigenvalues, we obtain the solutions

$$
\begin{aligned}
\lambda_{n} & =n^{2} \\
X_{n}(x) & =\sin (n x) \\
T_{n}(t) & =A_{n} \cos (n t)+B_{n} \sin (n t)
\end{aligned}
$$

So the general solution looks like

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos (n t)+B_{n} \sin (n t)\right) \sin (n x)
$$

$u_{t}(x, 0)=0$ implies that all of the $B_{n}=0$, so

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos (n t) \sin (n x)
$$

The other IC gives

$$
u(x, 0)=\sinh (x)=\sum_{n=1}^{\infty} A_{n} \sin (n x)
$$

so we need to calculate the Fourier series for $\sinh (x)$ on $(-\pi, \pi)$. We could find this using our solution to Problem 29. but instead let's calculate the Fourier coefficients directly:

$$
\begin{aligned}
A_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \sinh (x) \sin (n x) d x=\operatorname{Im}\left(\frac{1}{\pi} \int_{-\pi}^{\pi} \sinh (x) e^{i n x} d x\right) \\
& =\operatorname{Im}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(e^{x} e^{i n x}-e^{-x} e^{i n x}\right) d x\right) \\
& =\frac{1}{2 \pi} \operatorname{Im}\left(\int_{-\pi}^{\pi} e^{(1+i n) x} d x-\int_{-\pi}^{\pi} e^{-(1-i n) x} d x\right) \\
& =\frac{1}{2 \pi} \operatorname{Im}\left(\frac{e^{\pi} e^{i n \pi}}{1+i n}-\frac{e^{-\pi} e^{-i n \pi}}{1+i n}+\frac{e^{-\pi} e^{i n \pi}}{1-i n}-\frac{e^{\pi} e^{-i n \pi}}{1-i n}\right) \\
& =\frac{2 \sinh (\pi)}{\pi}(-1)^{n+1} \frac{n}{n^{2}+1}
\end{aligned}
$$

So

$$
u(x, t)=\frac{2}{\pi} \sinh (\pi) \sum_{n=1}^{\infty} \frac{n}{n^{2}+1}(-1)^{n+1} \cos (n t) \sin (n x)
$$

Problem 38. Using the method of separation of variables, solve the following problem:

$$
\begin{array}{rlrl}
u_{t t}-8 u_{x x} & =0, & 0<x<\pi, \\
u(0, t) & =u(\pi, t) \\
u_{x}(0, t) & =u_{x}(\pi, t) \\
u(x, 0) & =x(\pi-x), \\
u_{t}(x, 0) & =0 . &
\end{array}
$$

Problem 39. Using the method of separation of variables, solve the following problem:

$$
\begin{aligned}
u_{t}-7 u_{x x} & =0, & 0<x<1, \\
u(0, t) & =0, & \\
u_{x}(1, t) & =0, & \\
u(x, 0) & =1 . &
\end{aligned}
$$

Problem 40. Using the method of separation of variables, solve the following problem:

$$
\begin{aligned}
u_{t}-u_{x x} & =10 u, & -1<x<1, \\
u_{x}(-1, t) & =0, & \\
u_{x}(1, t) & =0, & \\
u(x, 0) & =|x| . &
\end{aligned}
$$

Problem 41. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$
\begin{aligned}
\Delta u & =0, & 0 \leq r<2,-\pi \leq \theta \leq \pi \\
u(2, \theta) & =\pi^{2}-\theta^{2} . &
\end{aligned}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Problem 42. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$
\begin{array}{rlr}
\Delta u & =0, & 1<r<2,-\pi \leq \theta \leq \pi, \\
u(1, \theta) & =\sin (2 \theta), \\
u(2, \theta) & =|\theta| .
\end{array}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Solution. In polar coordinates, the Laplace equation is

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0
$$

and separating variables $u(r, \theta)=R(r) \Theta(\theta)$ gives the system of equations

$$
\begin{aligned}
\Theta^{\prime \prime}+\lambda \Theta & =0 \\
r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R & =0
\end{aligned}
$$

with 2π-periodic $B C$ for Θ. The eigenvalues and Θ eigenfunctions are

$$
\begin{array}{ll}
\lambda_{0}=0, & \Theta_{0}=0 \\
\lambda_{n}=n^{2}, & \Theta_{n}=C_{n} \cos (n \theta)+D_{n} \sin (n \theta)
\end{array}
$$

Solving the Euler type equation for R gives

$$
\begin{aligned}
& R_{0}(r)=A_{0}+B_{0} \log (r) \\
& R_{n}(r)=A_{n} r^{n}+B_{n} r^{-n}
\end{aligned}
$$

and so

$$
u(r, \theta)=\frac{1}{2}\left(A_{0}+B_{0} \log (r)\right)+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n}\right)\left(C_{n} \cos (n \theta)+D_{n} \sin (n \theta)\right)
$$

At $r=1$,

$$
\sin (2 \theta)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right)\left(C_{n} \cos (n \theta)+D_{n} \sin (n \theta)\right)
$$

from which we obtain the equations

$$
\begin{aligned}
A_{0} & =0=C_{2}, & \left(A_{2}+B_{2}\right) D_{2}=1, \\
\left(A_{n}+B_{n}\right) C_{n} & =0, & n \neq 2 \\
\left(A_{n}+B_{n}\right) D_{n} & =0, & n \neq 2
\end{aligned}
$$

At $r=2$ we have

$$
u(2, \theta)=|\theta|=\frac{\log (2)}{2} B_{0}+\sum_{n=1}^{\infty}\left(2^{n} A_{n}+2^{-n} B_{n}\right)\left(C_{n} \cos (n \theta)+D_{n} \sin (n \theta)\right)
$$

Comparing this with the Fourier expansion of $|\theta|$ on $(-\pi, \pi)$

$$
|\theta|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos ((2 n-1) \theta)
$$

we obtain the equations

$$
\begin{aligned}
\frac{\log (2)}{2} B_{0} & =\frac{\pi}{2}, & \\
\left(2^{n} A_{n}+2^{-n} B_{n}\right) D_{n} & =0, & \text { for all } n, \\
\left(2^{n} A_{n}+2^{-n} B_{n}\right) C_{n} & =0, & \text { for even } n, \\
\left(2^{n} A_{n}+2^{-n} B_{n}\right) C_{n} & =-\frac{4}{\pi n^{2}}, & \text { for odd } n .
\end{aligned}
$$

Let's take these two systems of equations and use them to simplify the series expression before we calculate the final answer. We have:

$$
\begin{aligned}
B_{0} & =\frac{\pi}{\log (2)}, & 4 A_{2}+\frac{B_{2}}{4} & =0 \\
D_{2} & =\frac{1}{A_{2}+B_{2}}=-\frac{1}{15 A_{2}}, & D_{n} & =0 \text { for } n \neq 2 \\
C_{n} & =0 \text { for } n \text { even, } & B_{n} & =-A_{n} \text { for } n \text { odd } .
\end{aligned}
$$

Rewriting the series solution for u using this information, reindexing to sum over only odd integers, and collecting together various constants, we have

$$
u(r, \theta)=\frac{\pi}{2} \frac{\log (r)}{\log (2)}-\frac{r^{2}-16 r^{-2}}{15} \sin (2 \theta)+\sum_{n=1}^{\infty} A_{2 n-1}\left(r^{2 n-1}-r^{-2 n+1}\right) \cos ((2 n-1) \theta)
$$

Comparing this again at $r=2$ with the Fourier series for $|\theta|$ gives

$$
\left(2^{2 n-1}-2^{-2 n+1}\right) A_{2 n-1}=-\frac{4}{\pi(2 n-1)^{2}}
$$

So the solution to the problem is

$$
u(r, \theta)=\frac{\pi}{2} \frac{\log (r)}{\log (2)}-\frac{r^{2}-16 r^{-2}}{15} \sin (2 \theta)-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{r^{2 n-1}-r^{-2 n+1}}{2^{2 n-1}-2^{-2 n+1}} \cdot \frac{\cos ((2 n-1) \theta)}{(2 n-1)^{2}}
$$

Problem 43. Using the method of separation of variables solve the following problem for the $2 d$ Laplace equation:

$$
\begin{aligned}
\Delta u & =0, & 1<r,-\pi \leq \theta \leq \pi, \\
u(1, \theta) & =\theta^{4} . &
\end{aligned}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Problem 44. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$
\begin{array}{rlrl}
\Delta u & =0, & 1<r<2,-\pi \leq \theta \leq \pi, \\
u(1, \theta) & =1+\theta^{2}, \\
u_{r}(2, \theta) & =0 . &
\end{array}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Problem 45. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$
\begin{aligned}
\Delta u & =0, \\
u(3, \theta) & =e^{\theta} \\
u(r, 0)=u(r, \pi) & =0
\end{aligned}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Problem 46. Using the method of separation of variables solve the following problem for the 2d Laplace equation:

$$
\begin{aligned}
\Delta u & =0, \\
u(2, \theta) & =\theta, \\
u(r, 0)=u_{\theta}\left(r, \frac{\pi}{2}\right) & =0 .
\end{aligned}
$$

Here (r, θ) are the standard polar coordinates on \mathbb{R}^{2} :

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Problem 47. Consider the 2d Helmholtz equation

$$
\left(\Delta+\omega^{2}\right) u=0
$$

where ω is a constant. Separate variables in cartesian coordinates $u(x, y)=X(x) Y(y)$, and write down the ODEs that X and Y must satisfy.

Problem 48. Consider the 2d Helmholtz equation

$$
\left(\Delta+\omega^{2}\right) u=0
$$

where ω is a constant. Separate variables in polar coordinates $u(r, \theta)=R(r) \Theta(\theta)$, and write down the ODEs that R and Θ must satisfy.

Problem 49. Consider the 3d Helmholtz equation

$$
\left(\Delta+\omega^{2}\right) u=0
$$

where ω is a constant. Separate variables in cartesian coordinates $u(x, y, z)=X(x) Y(y) Z(z)$, and write down the ODEs that X, Y and Z must satisfy.

Problem 50. Consider the 3d Helmholtz equation

$$
\left(\Delta+\omega^{2}\right) u=0
$$

where ω is a constant. Separate variables in spherical coordinates $u(\rho, \theta, \phi)=R(\rho) \Theta(\theta) \Phi(\phi)$, and write down the ODEs that R, Θ and Φ must satisfy.

7 Fourier transforms

Problem 51. Calculate the Fourier transform of

$$
f(x)= \begin{cases}1, & |x|<5 \\ 0, & |x|>5\end{cases}
$$

Solution.

$$
\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-5}^{5} e^{-i k x} d x=\frac{e^{-5 i k}-e^{5 i k}}{(-i k) \sqrt{2 \pi}}=\sqrt{\frac{2}{\pi}} \frac{\sin (5 k)}{k}
$$

Problem 52. Calculate the Fourier transform of

$$
f(x)= \begin{cases}x, & |x|<5 \\ 0, & |x|>5\end{cases}
$$

Solution. This function is x times the function of x in Problem 51, so using properties of the Fourier transform,

$$
\hat{f}(k)=i \frac{d}{d k}\left(\sqrt{\frac{2}{\pi}} \frac{\sin (5 k)}{k}\right)=i \sqrt{\frac{2}{\pi}} \frac{5 k \cos (5 k)-\sin (5 k)}{k^{2}} .
$$

Problem 53. Calculate the Fourier transform of $e^{-4 x^{2}}$.
Problem 54. Calculate the Fourier transform of $e^{-3|x|}$.
Problem 55. Calculate the Fourier transform of $x^{2} e^{-|x|}$.
Problem 56. Calculate the Fourier transform of $x^{4} e^{-4 x^{2}}$.
Problem 57. Calculate the Fourier transform of

$$
f(x)= \begin{cases}1-|x|, & |x|<1 \\ 0, & |x|>1\end{cases}
$$

Problem 58. Use the Fourier transform to solve the heat equation with convection problem

$$
\begin{aligned}
u_{t} & =\kappa u_{x x}+\mu u_{x}, & -\infty<x<\infty, \\
u(x, 0) & =\phi(x), & \\
\max |u| & <\infty, &
\end{aligned}
$$

where $\kappa>0$.
Problem 59. Use the Fourier transform to solve

$$
\begin{aligned}
\Delta u & =0, \\
u(x, 0) & =x^{4} e^{-4 x^{2}}, \\
\max |u| & <\infty .
\end{aligned}
$$

$$
-\infty<x<+\infty, y>0
$$

Problem 60. Use the Fourier transform to solve

$$
\begin{array}{rlr}
\Delta u & =0, \\
u(x, 0) & = \begin{cases}x, & |x|<5 \\
0, & |x|>5\end{cases} \\
u(x, 1) & = \begin{cases}1, & |x|<5 \\
0, & |x|>5\end{cases}
\end{array}
$$

Problem 61. Use the Fourier transform to solve the 2d heat equation

$$
\begin{aligned}
4 u_{t} & =\Delta u, \\
u(x, y, 0) & = \begin{cases}e^{-\frac{y^{2}}{2}}, & |x|<5 \\
0, & |x|>5\end{cases}
\end{aligned}
$$

Solution. Take the Fourier transform in both x and $y,(x, y) \rightarrow\left(k_{x}, k_{y}\right)=: \vec{k}$, to transform the PDE into the differential equation

$$
\hat{u}_{t}=-\frac{\|\vec{k}\|^{2}}{4} \hat{u} .
$$

This has solution

$$
\hat{u}(\vec{k}, t)=\hat{g}(\vec{k}) e^{-\frac{\|\vec{k}\|}{4} t},
$$

where \hat{g} is the Fourier transform of the initial condition $g(x, y)=u(x, y, 0)$.
There are two possible ways you could be asked to "solve" the problem from this point:
(i) Write the final answer in terms of a convolution (I'll leave this method up to you).
(ii) Calculate \hat{g} and write the answer as an inverse Fourier transform. For this:

$$
\begin{aligned}
\hat{g}(\vec{k}) & =\frac{1}{2 \pi} \iint g(\vec{x}) e^{-i \vec{k} \cdot \vec{x}} d x d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} e^{-i k_{y} y} d y \cdot \frac{1}{\sqrt{2 \pi}} \int_{-5}^{5} e^{-i k_{x} x} d x \\
& =\sqrt{\frac{2}{\pi}} \frac{\sin \left(5 k_{x}\right)}{k_{x}} e^{-\frac{k_{y}^{2}}{2}} .
\end{aligned}
$$

So,

$$
\hat{u}\left(k_{x}, k_{y}, t\right)=\sqrt{\frac{2}{\pi}} \frac{\sin \left(5 k_{x}\right)}{k_{x}} e^{-\frac{k_{y}^{2}}{2}} e^{-\frac{\|\vec{k}\|}{4} t}
$$

and

$$
u(x, y, t)=\frac{1}{\sqrt{2 \pi^{3}}} \iint \frac{\sin \left(5 k_{x}\right)}{k_{x}} e^{-\frac{k_{y}^{2}}{2}} e^{-\frac{\|\vec{k}\|}{4} t} e^{i \vec{k} \cdot \vec{x}} d k_{x} d k_{y}
$$

8 Harmonic functions

Problem 62. Find all the harmonic functions on $\mathbb{R}_{x, y}^{2}$ which depend only on the radial coordinate $r=$ $\sqrt{x^{2}+y^{2}}$.
Problem 63. Suppose that u is a harmonic function on the open unit disc $\left\{x^{2}+y^{2}<1\right\}$ which is continuous on the closed unit disc $\left\{x^{2}+y^{2} \leq 1\right\}$ and has boundary value

$$
\left.u\right|_{x^{2}+y^{2}=1}=|\theta|^{3}, \quad-\pi \leq \theta \leq \pi
$$

(a) Determine the maximum value that u takes on the closed unit disc.
(b) Determine $u(0)$.

Problem 64. Suppose that u is a harmonic function on the open unit disc $\left\{x^{2}+y^{2}<1\right\}$ which is continuous on the closed unit disc $\left\{x^{2}+y^{2} \leq 1\right\}$ and has boundary value

$$
\left.u\right|_{x^{2}+y^{2}=1}=\theta^{2}-\theta^{4}, \quad-\pi \leq \theta \leq \pi
$$

(a) Determine the maximum value that u takes on the closed unit disc.
(b) Determine $u(0)$.

Problem 65. Suppose that u is a harmonic function on the open unit disc $\left\{x^{2}+y^{2}<1\right\}$ which is continuous on the closed unit disc $\left\{x^{2}+y^{2} \leq 1\right\}$ and has boundary value

$$
\left.u\right|_{x^{2}+y^{2}=1}=|\theta|+\sin (\theta), \quad-\pi \leq \theta \leq \pi
$$

(a) Determine the minimum value that u takes on the closed unit disc.
(b) Determine $u(0)$.

Solution. Write $g(\theta):=|\theta|+\sin (\theta)$.
(a) By the minimum principle, the minimum of u on the closed disc is the minimum of u on the boundary circle. So we need to find the minimum of $g(\theta),-\pi<\theta<\pi . g$ is differentiable away from $\theta=0$, and

$$
g^{\prime}(\theta)=\left\{\begin{array}{lr}
1+\cos (\theta), & 0<\theta<\pi \\
-1+\cos (\theta), & -\pi<\theta<0
\end{array}\right.
$$

Since $|\cos (\theta)|<1$ on these domains, $g^{\prime}(\theta) \neq 0$ for any of these values. So to find the minimum, it reamins to check the endpoints $\theta=0, \pi$:

$$
\begin{aligned}
& g(0)=0 \\
& g(\pi)=\pi
\end{aligned}
$$

So $\min u=0$.
(b) By the mean value formula,

$$
u(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(|\theta|+\sin (\theta)) d \theta=\frac{1}{\pi} \int_{0}^{\pi} \theta d \theta+\frac{1}{2 \pi} \underbrace{\int_{-\pi}^{\pi} \sin (\theta) d \theta}_{=0 \text { (odd function) }}=\frac{1}{\pi} \cdot \frac{\pi^{2}}{2}=\frac{\pi}{2}
$$

Problem 66. Suppose that u is a harmonic function on the open unit disc $\left\{x^{2}+y^{2}<1\right\}$ which is continuous on the closed unit disc $\left\{x^{2}+y^{2} \leq 1\right\}$ and has boundary value

$$
\left.u\right|_{x^{2}+y^{2}=1}=\left|\sin \left(\frac{\theta}{2}\right)\right| \quad-\pi \leq \theta \leq \pi .
$$

(a) Determine the maximum value that u takes on the closed unit disc.
(b) Determine $u(0)$.

Problem 67. Suppose that u is a harmonic function on the open disc $\left\{x^{2}+y^{2}<4\right\}$ which is continuous on the closed disc $\left\{x^{2}+y^{2} \leq 4\right\}$ and has boundary value

$$
\left.u\right|_{x^{2}+y^{2}=4}=\frac{3}{2} x y+1 .
$$

(a) Determine the maximum value that u takes on the closed unit disc.
(b) Determine $u(0)$.

9 Calculus of variations

Problem 68. Find the curve $y=u(x)$ that makes the integral

$$
\int_{0}^{1}\left[\left(\frac{d u}{d x}\right)^{2}+x u\right] d x
$$

stationary, subject to the constraints $u(0)=0, u(1)=1$.

Problem 69. Find the Euler-Lagrange equation for the action

$$
S[u]=\iint\left(\frac{1}{2} u_{x} u_{t}+u_{x}^{3}-\frac{1}{2} u_{x x}^{2}\right) d x d t .
$$

Solution. Explicitly expanding $S[u+\delta u]$ in powers of δu gives

$$
S[u+\delta u]-S[u]=\iint\left(\frac{1}{2} u_{x} \delta u_{t}+\frac{1}{2} u_{t} \delta u_{x}+3 u_{x}^{2} \delta u_{x}-u_{x x} \delta u_{x x}\right) d x d t+O\left(\delta u^{2}\right)
$$

so that

$$
\begin{aligned}
\delta S & =\iint\left(\frac{1}{2} u_{x} \delta u_{t}+\frac{1}{2} u_{t} \delta u_{x}+3 u_{x}^{2} \delta u_{x}-u_{x x} \delta u_{x x}\right) d x d t \\
& =\iint\left(-\frac{1}{2} u_{x t} \delta u-\frac{1}{2} u_{x t} \delta u-3 \frac{\partial}{\partial x}\left(u_{x}^{2}\right) \delta u-u_{x x x x} \delta u\right) d x d t+(b d y \text { terms }) \\
& =\iint\left(-u_{x t}-6 u_{x} u_{x x}-u_{x x x x}\right) \delta u d x d t+(b d y \text { terms }) .
\end{aligned}
$$

Setting $\delta S=0$ we find the Euler-Lagrange equation

$$
u_{x t}+6 u_{x} u_{x x}+u_{x x x x}=0
$$

Problem 70. Find the Euler-Lagrange equation for the functional

$$
T[y]=\int_{0}^{a} \sqrt{\frac{1+\left(y^{\prime}\right)^{2}}{2 g y}} d x
$$

Problem 71. Find the Euler-Lagrange equations and boundary conditions for the functional

$$
S[u]=\int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2}\|\nabla u\|^{2}+\frac{x}{1+y^{2}} u\right) d x d y+\int_{\partial([0,1] \times[0,1])}\left(\frac{x}{2} u^{2}-u\right) d v o l .
$$

Problem 72. Find the Euler-Lagrange equation for the functional

$$
S[u]=\int_{-2}^{2} \frac{u^{2} \sqrt{1+\left(\frac{d u}{d x}\right)^{2}}}{2} d x
$$

Problem 73. Let $\Omega \subset \mathbb{R}^{2}$ be an open domain with smooth boundary. The area of a surface in \mathbb{R}^{3} defined as the graph of a function $z: \Omega \rightarrow \mathbb{R}$ is

$$
A[z]=\iint_{\Omega} \sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y
$$

Find the Euler-Lagrange equation for the functional A.

References

[IvrXX] Victor Ivrii. Partial Differential Equations. online textbook for APM346, 20XX.
[Str08] Walter A. Strauss. Partial differential equations. John Wiley \& Sons, Ltd., Chichester, second edition, 2008. An introduction.

