
APM 346 – Final Exam Practice Problems.

Richard Derryberry

April 8, 2019

(Problems are mostly taken from or variants of problems from [IvrXX] or [Str08].)

1 Introductory explicitly solvable problems

Problem 1. Solve the equation 5uy + uxy = 0.

Problem 2. Solve the equation uxy − 4ux = ex+5y.

Problem 3. Solve the equation uxy = uxuy.

Problem 4. Solve the system of equations

uxy = 0,

uyz = 0,

uzx = 1.

Solution. Integrate uxy = 0 to obtain uy = f(y, z). The second equation gives 0 = fz, so in fact uy = f(y).
Hence u(x, y, z) = F (y) +G(x, z). Now,

1 = uzx = Gxz.

So Gx(x, z) = z+ h(x), and G(x, z) = xz+H(x) +A(z). Putting it all together (and renaming the arbitrary
functions in the solution) we have

u(x, y, z) = xz + f(x) + g(y) + h(z).

2 Method of characteristics

Problem 5. Solve the problem

2ut + 3ux = 0,

u(x, 0) = sin(x),

and sketch the characteristic curves.

Problem 6. Solve the problem

ux + uy + u = ex+2y,

u(x, 0) = 0,

and sketch the characteristic curves.

1
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Solution. First, let’s convert this into a homogeneous linear problem. Let p(x, y) = Aex+2y, so that

px = p,

py = 2p,

px + py + p = 4Aex+2y.

Then p is a particular solution to our equation if A = 1
4 . Now, let’s find the general solution to the homoge-

neous problem
vx + vy = −v.

The characteristic curves are given by
x− y = C

for C constant (I believe y’all can sketch these particular characteristic curves). These can be parametrised
by γ(s) = (x(s), y(s)) = (s+ C, s), and the corresponding ODE to solve along the characteristic curves is

dv

ds
= −v ⇒ v(γ(s)) = Ae−s

where A is constant along γ(s). I.e. the general solution to the homogeneous problem is v(x, y) = φ(x−y)e−y

for an arbitrary function φ.

So the general solution to the inhomogeneous problem is

u(x, y) = φ(x− y)e−y +
1

4
ex+2y,

and applying the BC at y = 0 gives

0 = φ(x) +
1

4
ex

so that φ(x) = − 1
4e
x. Putting this together gives

u(x, y) =
1

4
ex+2y − 1

4
ex−ye−y =

ex

2
sinh(2y).

Problem 7. Find the general solution to the equation

(1 + t2)ut + ux = 0,

and sketch the characteristic curves.

Problem 8. Solve the problem

ut + txux = 0,

u(x, 0) =
1

1 + x2
,

and sketch the characteristic curves.

Problem 9. Solve the problem

ut + t2ux = 0,

u(x, 0) = ex,

and sketch the characteristic curves.

Problem 10. Find the general solution to the equation

xux + yuy = 0,

and sketch the characteristic curves.
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Problem 11. Solve the problem √
1− x2ux + uy = 0,

u(0, y) = y,

and sketch the characteristic curves.

Problem 12. Solve the problem

ut + xux = x,

u(x, 0) = −x,

and sketch the characteristic curves.

3 The wave equation

Problem 13. Solve the IVP

utt − uxx = 0,

u|t=0 =

{
1, x < 0,
0, x > 0,

ut|t=0 =

{
0, x < 0,
1, x > 0.

Solution. Let’s assume t ≥ 0 (if not we just have to care about a couple of extra regions). We can apply
D’Alembert’s formula

u(x, t) =
g(x+ t) + g(x− t)

2
+

1

2

∫ x+t

x−t
h(s) ds

where g(x) = u(x, 0) and h(x) = ut(x, 0). Then the solution is piecewise defined over three regions:

• x < −t: I.e. x+ t < 0. In this region the h(s) integral does not contribute, and we have

u(x, t) =
1 + 1

2
+ 0 = 1.

• |x| < t: Then g(x− t) = 0 and g(x+ t) = 1, so we have

u(x, t) =
1

2
+

1

2

∫ x+t

0

ds =
1

2
+

1

2
(x+ t).

• x > t: Then g(x± t) = 0 and the solution is

u(x, t) =
1

2

∫ x+t

x−t
ds =

(x+ t)− (x− t)
2

= t.

Problem 14. Solve the IVP

utt − 3uxx = 0,

u|t=0 = ex,

ut|t=0 = sin(x).
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Problem 15. Solve the IVP

utt − uxx = xt,

u(x, 0) = 0,

ut(x, 0) = 0.

Problem 16. Solve the IBVP (x, t > 0)

utt − uxx = 0,

u(x, 0) = sin(x),

ut(x, 0) = 0,

ux(0, t) = 0.

Problem 17. Determine u|(x,t)=(50.1,12) when u is a solution to the problem

utt − π2uxx = 0,

u|t=0 =

{
e−

x2

7 , x < 3,
0, x > 3,

ut|t=0 = 0.

Problem 18. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
homogeneous Dirichlet boundary conditions on ∂Ω. Prove that the energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

is conserved.

Problem 19. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
homogeneous Neumann boundary conditions on ∂Ω. Prove that the energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

is conserved.

Solution. Homogeneous Neumann BCs means that the normal derivative ∂u
∂ν along the boundary ∂Ω vanishes

identically. So we calculate:

dEΩ

dt
=

1

2

∫∫∫
Ω

(
2ututt + 2c2∇ut · ∇u

)
d3~x = c2

∫∫∫
Ω

(ut∆u+∇ut · ∇u) d3~x

= c2
∫∫∫

Ω

∇ · (ut∇u) d3~x = c2
∫∫

∂Ω

ut∇u · ν dvol∂Ω = c2
∫∫

∂Ω

ut
∂u

∂ν
dvol∂Ω = 0.

Problem 20. Suppose that u(x, y, z, t) solves the wave equation utt = c2∆u on the bounded domain Ω, with
boundary conditions ∂u

∂ν = ∂u
∂t on ∂Ω (where ν is the outward pointing normal vector field on ∂Ω). Is the

energy of u

EΩ(t) :=
1

2

∫∫∫
Ω

(u2
t + c2|∇u|2) dx dy dz

increasing, decreasing, or constant?

Problem 21. Where does a solution u(x, y, z, t) to the homogeneous wave equation have to vanish if its
initial data vanishes outside of the unit ball {~x ∈ R3 | ‖x‖ ≤ 1}?
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4 The heat equation

Problem 22. Solve the heat equation IVP

ut − uxx = 0, −∞ < x, t <∞,

u(x, 0) =

{
1, |x| < 1,
0, |x| > 1.

Express your answer in terms of the error function

Erf(x) =
2√
π

∫ x

0

e−z
2

dz.

Problem 23. Solve the heat equation IVP

4ut − uxx = 0, −∞ < x, t <∞,
u(x, 0) = e−x.

Problem 24. Suppose that u is a solution to the 1d heat equation on (0, 1), satisfying the boundary conditions

ux(0, t)− u(0, t) = 0,

ux(1, t) = 0.

Show that the function

E(t) =

∫ 1

0

u(x, t)2 dx

is nonincreasing, and that it decreases unless u(x, t) is identically zero.

Problem 25. Suppose that u is a solution to the 1d heat equation ut = uxx on {0 < x < 1, 0 < t < ∞},
with homogeneous Dirichlet boundary conditions and initial condition

u(x, 0) = 4x(1− x).

Prove that 0 < u(x, t) < 1 for all t > 0 and all 0 < x < 1.

Solution. The (strong) maximum/minimum principles tell us that the max/min of the solution u must occur
either at the endpoints x = 0, 1 or at time t = 0, and moreover that if the max/min occurs anywhere in the
interior 0 < x < 1, t > 0, then the function must be constant. The non-constant IC tells us that our solution
is not constant – hence it suffices to show that at the endpoints at at time zero, the function takes minimum
0 and maximum 1.

The endpoints are held constant at u(0, t) = u(1, t) = 0, and the function g(x) = u(x, 0) = 4x(1− x) is ≥ 0,
so minu = 0. Further,

g′(x) = 4− 8x = 0 ⇒ x =
1

2

so that x = 1
2 is the only interior critical point; since g′′ = −8 < 0 this critical point is a maximum, and

g(1/2) = 2(1− 1
2 ) = 1.

Problem 26. Suppose that u is a solution to the 1d heat equation ut = uxx on {0 < x < 1, 0 < t < ∞},
with homogeneous Dirichlet boundary conditions and initial condition

u(x, 0) = 1− x2.

(a) Prove that u(x, t) is strictly positive for all t > 0 and 0 < x < 1.

(b) Prove that
µ(t) := max

0≤x≤1
u(x, t)

is a decreasing function of t.
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5 Fourier series

Problem 27. Determine the real Fourier series representation of sin
(
x
2

)
on the interval (−π, π).

Problem 28. Determine the real Fourier series representation of sinh (x) on the interval (−π, π).

Problem 29. Determine the complex Fourier series representation of eαx on the interval (−π, π), for α ∈ C.
Which values of α are “exceptional”?

Solution. The Fourier coefficients are given by

cn =
1

2π

∫ π

−π
eαxe−inx dx

=
1

2π

∫ π

−π
e(α−in)x dx

=
(−1)n

2π(α− in)
(eαπ − e−απ)

provided α 6= in for any n ∈ Z (the “exceptional” values). So

eαx =
∑
n∈Z

(−1)n

2π(α− in)
(eαπ − e−απ)einx.

Problem 30. Determine the real Fourier series representation of |x| on the interval (−1, 1).

Problem 31. Determine the sine Fourier series representation of x(π − x) on the interval (0, π).

Problem 32. Determine the sine Fourier series representation of x2 on the interval (0, 1).

Problem 33. Determine the sine Fourier series representation of 1 on the interval (0, π).

Problem 34. Determine the cosine Fourier series representation of 1 on the interval (0, π).

Problem 35. Determine the cosine Fourier series representation of x on the interval (0, 1).

Problem 36. Determine the cosine Fourier series representation of x2 on the interval (0, 1).

6 Separation of variables

Problem 37. Using the method of separation of variables, solve the following problem:

utt − uxx = 0, −π < x < π,

u(−π, t) = 0,

u(π, t) = 0,

u(x, 0) = sinh(x),

ut(x, 0) = 0.

Solution. Looking for a separated solution u(x, t) = X(x)T (t) gives the system of equations

X ′′ + λX = 0

T ′′ + λT = 0

X(−π) = X(π) = 0
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We have homogeneous Dirichlet BCs on both ends, so there are no solutions for λ < 0 or λ = 0. For
λ = ω2 > 0, ω > 0, we find

X(x) = A cos(ωx) +B sin(ωx),

X(π) = A cos(ωπ) +B sin(ωπ) = 0,

X(−π) = A cos(ωπ)−B sin(ωπ) = 0.

The ICs are odd, so we may take A = 0 and look for solutions to

sin(ωπ) = 0.

These are given by ω = n ∈ Z>0, i.e. n = 1, 2, 3, . . .. Using these eigenvalues, we obtain the solutions

λn = n2

Xn(x) = sin(nx)

Tn(t) = An cos(nt) +Bn sin(nt)

So the general solution looks like

u(x, t) =

∞∑
n=1

(An cos(nt) +Bn sin(nt)) sin(nx).

ut(x, 0) = 0 implies that all of the Bn = 0, so

u(x, t) =

∞∑
n=1

An cos(nt) sin(nx).

The other IC gives

u(x, 0) = sinh(x) =

∞∑
n=1

An sin(nx),

so we need to calculate the Fourier series for sinh(x) on (−π, π). We could find this using our solution to
Problem 29, but instead let’s calculate the Fourier coefficients directly:

An =
1

π

∫ π

−π
sinh(x) sin(nx) dx = Im

(
1

π

∫ π

−π
sinh(x)einx dx

)
= Im

(
1

2π

∫ π

−π
(exeinx − e−xeinx) dx

)
=

1

2π
Im

(∫ π

−π
e(1+in)x dx−

∫ π

−π
e−(1−in)x dx

)
=

1

2π
Im

(
eπeinπ

1 + in
− e−πe−inπ

1 + in
+
e−πeinπ

1− in
− eπe−inπ

1− in

)
=

2 sinh(π)

π
(−1)n+1 n

n2 + 1

So

u(x, t) =
2

π
sinh(π)

∞∑
n=1

n

n2 + 1
(−1)n+1 cos(nt) sin(nx).

Problem 38. Using the method of separation of variables, solve the following problem:

utt − 8uxx = 0, 0 < x < π,

u(0, t) = u(π, t),

ux(0, t) = ux(π, t),

u(x, 0) = x(π − x),

ut(x, 0) = 0.
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Problem 39. Using the method of separation of variables, solve the following problem:

ut − 7uxx = 0, 0 < x < 1,

u(0, t) = 0,

ux(1, t) = 0,

u(x, 0) = 1.

Problem 40. Using the method of separation of variables, solve the following problem:

ut − uxx = 10u, −1 < x < 1,

ux(−1, t) = 0,

ux(1, t) = 0,

u(x, 0) = |x|.

Problem 41. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 2, −π ≤ θ ≤ π,
u(2, θ) = π2 − θ2.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 42. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r < 2, −π ≤ θ ≤ π,
u(1, θ) = sin(2θ),

u(2, θ) = |θ|.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Solution. In polar coordinates, the Laplace equation is

urr +
1

r
ur +

1

r2
uθθ = 0,

and separating variables u(r, θ) = R(r)Θ(θ) gives the system of equations

Θ′′ + λΘ = 0

r2R′′ + rR′ − λR = 0

with 2π-periodic BCs for Θ. The eigenvalues and Θ eigenfunctions are

λ0 = 0, Θ0 = 0,

λn = n2, Θn = Cn cos(nθ) +Dn sin(nθ).

Solving the Euler type equation for R gives

R0(r) = A0 +B0 log(r),

Rn(r) = Anr
n +Bnr

−n,
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and so

u(r, θ) =
1

2
(A0 +B0 log(r)) +

∞∑
n=1

(Anr
n +Bnr

−n)(Cn cos(nθ) +Dn sin(nθ)).

At r = 1,

sin(2θ) =
1

2
A0 +

∞∑
n=1

(An +Bn)(Cn cos(nθ) +Dn sin(nθ)),

from which we obtain the equations

A0 = 0 = C2, (A2 +B2)D2 = 1,

(An +Bn)Cn = 0, n 6= 2,

(An +Bn)Dn = 0, n 6= 2.

At r = 2 we have

u(2, θ) = |θ| = log(2)

2
B0 +

∞∑
n=1

(2nAn + 2−nBn)(Cn cos(nθ) +Dn sin(nθ)).

Comparing this with the Fourier expansion of |θ| on (−π, π)

|θ| = π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)θ)

we obtain the equations

log(2)

2
B0 =

π

2
,

(2nAn + 2−nBn)Dn = 0, for all n,

(2nAn + 2−nBn)Cn = 0, for even n,

(2nAn + 2−nBn)Cn = − 4

πn2
, for odd n.

Let’s take these two systems of equations and use them to simplify the series expression before we calculate
the final answer. We have:

B0 =
π

log(2)
, 4A2 +

B2

4
= 0,

D2 =
1

A2 +B2
= − 1

15A2
, Dn = 0 for n 6= 2,

Cn = 0 for n even, Bn = −An for n odd.

Rewriting the series solution for u using this information, reindexing to sum over only odd integers, and
collecting together various constants, we have

u(r, θ) =
π

2

log(r)

log(2)
− r2 − 16r−2

15
sin(2θ) +

∞∑
n=1

A2n−1(r2n−1 − r−2n+1) cos((2n− 1)θ).

Comparing this again at r = 2 with the Fourier series for |θ| gives

(22n−1 − 2−2n+1)A2n−1 = − 4

π(2n− 1)2
.

So the solution to the problem is

u(r, θ) =
π

2

log(r)

log(2)
− r2 − 16r−2

15
sin(2θ)− 4

π

∞∑
n=1

r2n−1 − r−2n+1

22n−1 − 2−2n+1
· cos((2n− 1)θ)

(2n− 1)2
.
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Problem 43. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r, −π ≤ θ ≤ π,
u(1, θ) = θ4.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 44. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 1 < r < 2, −π ≤ θ ≤ π,
u(1, θ) = 1 + θ2,

ur(2, θ) = 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 45. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 3, 0 ≤ θ ≤ π,
u(3, θ) = eθ,

u(r, 0) = u(r, π) = 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 46. Using the method of separation of variables solve the following problem for the 2d Laplace
equation:

∆u = 0, 0 ≤ r < 2, 0 ≤ θ ≤ π

2
,

u(2, θ) = θ,

u(r, 0) = uθ

(
r,
π

2

)
= 0.

Here (r, θ) are the standard polar coordinates on R2:

x = r cos(θ)

y = r sin(θ)

Problem 47. Consider the 2d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in cartesian coordinates u(x, y) = X(x)Y (y), and write down the
ODEs that X and Y must satisfy.
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Problem 48. Consider the 2d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in polar coordinates u(r, θ) = R(r)Θ(θ), and write down the ODEs
that R and Θ must satisfy.

Problem 49. Consider the 3d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in cartesian coordinates u(x, y, z) = X(x)Y (y)Z(z), and write
down the ODEs that X, Y and Z must satisfy.

Problem 50. Consider the 3d Helmholtz equation

(∆ + ω2)u = 0,

where ω is a constant. Separate variables in spherical coordinates u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ), and write down
the ODEs that R, Θ and Φ must satisfy.

7 Fourier transforms

Problem 51. Calculate the Fourier transform of

f(x) =

{
1, |x| < 5,
0, |x| > 5.

Solution.

f̂(k) =
1√
2π

∫ 5

−5

e−ikx dx =
e−5ik − e5ik

(−ik)
√

2π
=

√
2

π

sin(5k)

k
.

Problem 52. Calculate the Fourier transform of

f(x) =

{
x, |x| < 5,
0, |x| > 5.

Solution. This function is x times the function of x in Problem 51, so using properties of the Fourier
transform,

f̂(k) = i
d

dk

(√
2

π

sin(5k)

k

)
= i

√
2

π

5k cos(5k)− sin(5k)

k2
.

Problem 53. Calculate the Fourier transform of e−4x2

.

Problem 54. Calculate the Fourier transform of e−3|x|.

Problem 55. Calculate the Fourier transform of x2e−|x|.

Problem 56. Calculate the Fourier transform of x4e−4x2

.

Problem 57. Calculate the Fourier transform of

f(x) =

{
1− |x|, |x| < 1,
0, |x| > 1.
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Problem 58. Use the Fourier transform to solve the heat equation with convection problem

ut = κuxx + µux, −∞ < x <∞,
u(x, 0) = φ(x),

max |u| <∞,

where κ > 0.

Problem 59. Use the Fourier transform to solve

∆u = 0, −∞ < x < +∞, y > 0,

u(x, 0) = x4e−4x2

,

max |u| <∞.

Problem 60. Use the Fourier transform to solve

∆u = 0, −∞ < x < +∞, 0 < y < 1,

u(x, 0) =

{
x, |x| < 5,
0, |x| > 5,

u(x, 1) =

{
1, |x| < 5,
0, |x| > 5.

Problem 61. Use the Fourier transform to solve the 2d heat equation

4ut = ∆u, −∞ < x, y < +∞, t > 0,

u(x, y, 0) =

{
e−

y2

2 , |x| < 5,
0, |x| > 5.

Solution. Take the Fourier transform in both x and y, (x, y) → (kx, ky) =: ~k, to transform the PDE into
the differential equation

ût = −‖
~k‖2

4
û.

This has solution

û(~k, t) = ĝ(~k)e−
‖~k‖
4 t,

where ĝ is the Fourier transform of the initial condition g(x, y) = u(x, y, 0).

There are two possible ways you could be asked to “solve” the problem from this point:

(i) Write the final answer in terms of a convolution (I’ll leave this method up to you).

(ii) Calculate ĝ and write the answer as an inverse Fourier transform. For this:

ĝ(~k) =
1

2π

∫∫
g(~x)e−i

~k·~x dx dy

=
1√
2π

∫ ∞
−∞

e−
y2

2 e−ikyy dy · 1√
2π

∫ 5

−5

e−ikxx dx

=

√
2

π

sin(5kx)

kx
e−

k2
y
2 .

So,

û(kx, ky, t) =

√
2

π

sin(5kx)

kx
e−

k2
y
2 e−

‖~k‖
4 t,
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and

u(x, y, t) =
1√
2π3

∫∫
sin(5kx)

kx
e−

k2
y
2 e−

‖~k‖
4 tei

~k·~x dkx dky.

8 Harmonic functions

Problem 62. Find all the harmonic functions on R2
x,y which depend only on the radial coordinate r =√

x2 + y2.

Problem 63. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = |θ|3, −π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 64. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = θ2 − θ4, −π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 65. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 = |θ|+ sin(θ), −π ≤ θ ≤ π.

(a) Determine the minimum value that u takes on the closed unit disc.

(b) Determine u(0).

Solution. Write g(θ) := |θ|+ sin(θ).

(a) By the minimum principle, the minimum of u on the closed disc is the minimum of u on the boundary
circle. So we need to find the minimum of g(θ), −π < θ < π. g is differentiable away from θ = 0, and

g′(θ) =

{
1 + cos(θ), 0 < θ < π,
−1 + cos(θ), −π < θ < 0.

Since | cos(θ)| < 1 on these domains, g′(θ) 6= 0 for any of these values. So to find the minimum, it
reamins to check the endpoints θ = 0, π:

g(0) = 0,

g(π) = π.

So minu = 0.

(b) By the mean value formula,

u(0) =
1

2π

∫ π

−π
(|θ|+ sin(θ)) dθ =

1

π

∫ π

0

θ dθ +
1

2π

∫ π

−π
sin(θ) dθ︸ ︷︷ ︸

=0 (odd function)

=
1

π
· π

2

2
=
π

2
.



APM 346 Final Exam Practice Problems 14

Problem 66. Suppose that u is a harmonic function on the open unit disc {x2 +y2 < 1} which is continuous
on the closed unit disc {x2 + y2 ≤ 1} and has boundary value

u|x2+y2=1 =

∣∣∣∣sin(θ2
)∣∣∣∣ − π ≤ θ ≤ π.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

Problem 67. Suppose that u is a harmonic function on the open disc {x2 + y2 < 4} which is continuous on
the closed disc {x2 + y2 ≤ 4} and has boundary value

u|x2+y2=4 =
3

2
xy + 1.

(a) Determine the maximum value that u takes on the closed unit disc.

(b) Determine u(0).

9 Calculus of variations

Problem 68. Find the curve y = u(x) that makes the integral∫ 1

0

[(
du

dx

)2

+ xu

]
dx

stationary, subject to the constraints u(0) = 0, u(1) = 1.

Problem 69. Find the Euler-Lagrange equation for the action

S[u] =

∫∫ (
1

2
uxut + u3

x −
1

2
u2
xx

)
dx dt.

Solution. Explicitly expanding S[u+ δu] in powers of δu gives

S[u+ δu]− S[u] =

∫∫ (
1

2
uxδut +

1

2
utδux + 3u2

xδux − uxxδuxx
)
dx dt+O(δu2),

so that

δS =

∫∫ (
1

2
uxδut +

1

2
utδux + 3u2

xδux − uxxδuxx
)
dx dt

=

∫∫ (
−1

2
uxtδu−

1

2
uxtδu− 3

∂

∂x

(
u2
x

)
δu− uxxxxδu

)
dx dt+ (bdy terms)

=

∫∫
(−uxt − 6uxuxx − uxxxx) δu dx dt+ (bdy terms).

Setting δS = 0 we find the Euler-Lagrange equation

uxt + 6uxuxx + uxxxx = 0.
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Problem 70. Find the Euler-Lagrange equation for the functional

T [y] =

∫ a

0

√
1 + (y′)2

2gy
dx.

Problem 71. Find the Euler-Lagrange equations and boundary conditions for the functional

S[u] =

∫ 1

0

∫ 1

0

(
1

2
‖∇u‖2 +

x

1 + y2
u

)
dx dy +

∫
∂([0,1]×[0,1])

(x
2
u2 − u

)
dvol.

Problem 72. Find the Euler-Lagrange equation for the functional

S[u] =

∫ 2

−2

u2

√
1 +

(
du
dx

)2
2

dx.

Problem 73. Let Ω ⊂ R2 be an open domain with smooth boundary. The area of a surface in R3 defined as
the graph of a function z : Ω→ R is

A[z] =

∫∫
Ω

√
1 + z2

x + z2
y dx dy.

Find the Euler-Lagrange equation for the functional A.
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