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Problem 1 (Main) (5pts). Solve by Fourier method

utt − 4uxx = 0, − π < x < π,

u|x=−π = u|x=π = 0,

u|t=0 = 0, ut|t=0 = π − |x|.

Solution. Observing that interval [−π, π] is symmetric and the problem is
invariant with respect to x 7→ −x, we conclude that u(x, t) must be also
invariant with respect to x 7→ −x (that means, u(x, t) is an even function)
and we can consider problem on [0, π] with ux|x=0 = 0.
Plugging u(x, t) = X(x)T (t) into equation and boundary conditions and
separating variables we get

X ′′ + λX = 0,

X ′(0) = X(π) = 0,

T ′′ + 4λT = 0.

Then
λn = (n+ 1

2
)2, Xn = cos((n+ 1

2
)x),

Tn = An cos((2n+ 1)t) +Bn sin((2n+ 1)t),

un =
[
An cos((2n+ 1)t) +Bn sin((2n+ 1)t)

]
cos((n+ 1

2
)x)

with n = 0, 1, 2, . . .. Therefore the general solution is

u(x, t) =
∞∑
n=0

[
An cos((2n+ 1)t) +Bn sin((2n+ 1)t)

]
cos((n+ 1

2
)x).

Plugging into initial conditions we get

u(x, 0) =
∞∑
n=0

An cos((n+ 1
2
)x) = 0,

ut(x, 0) =
∞∑
n=0

(2n+ 1)Bn cos((n+ 1
2
)x) = π − x,

and therefore An = 0 and

Bn =
2

(2n+ 1)π

∫ π

0

(π − x) cos((n+ 1
2
)x) dx =

4

(2n+ 1)2π

∫ π

0

(π − x)d sin((n+ 1
2
)x) =

4

(2n+ 1)2π

[
(π − x) sin((n+ 1

2
)x)
∣∣x=π

x=0
+

∫ π

0

sin((n+ 1
2
)x) dx

]
=

− 8

(2n+ 1)3π
cos((n+ 1

2
)x)
∣∣x=π

x=0
=

8

(2n+ 1)3π
.

Finally,

u(x, t) =
∞∑
n=0

8

(2n+ 1)3π
sin((2n+ 1)t) cos((n+ 1

2
)x).
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Problem 1 (Late) (5pts). Solve by Fourier method

utt − uxx = 0, 0 < x < π,

u|x=0 = u|x=π = 0,

u|t=0 = 0, ut|t=0 = 1

Solution. Plugging u(x, t) = X(x)T (t) into equation and boundary condi-
tions and separating variables we get

X ′′ + λX = 0,

X(0) = X(π) = 0,

T ′′ + λT = 0.

Then
λn = n2, Xn = sin(nx),

Tn = An cos(nt) +Bn sin(nt),

un =
[
An cos(nt) +Bn sin(nt)

]
cos(nx)

with n = 1, 2, 3, . . .. Therefore the general solution is

u(x, t) =
∞∑
n=1

[
An cos(nt) +Bn sin(nt)

]
sin(nx).

Plugging into initial conditions we get

u(x, 0) =
∞∑
n=0

An sin(nx) = 0,

ut(x, 0) =
∞∑
n=0

nBn sin(nx) = 1.

Therefore An = 0 and

Bn =
2

nπ

∫ π

0

sin(nx) dx = − 2

n2π
cos(nx)

∣∣x=π

x=0
=

2

n2π

[
1− cos(nπ)

]
.

This vanishes for n even, and for n = 2m+ 1 odd equals

4

(2m+ 1)2π

Finally,

u(x, t) =
∞∑
n=0

4

(2n+ 1)2π
sin((2n+ 1)t) sin((2n+ 1)x).
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Problem 1 (Early) (5pts). Solve by Fourier method

ut − uxx = 0, 0 < x < π,

u|x=0 = ux|x=π = 0,

u|t=0 = sin(x)

Solution. Plugging u(x, t) = X(x)T (t) into equation and boundary condi-
tions and separating variables we get

X ′′ + λX = 0,

X(0) = X ′(π) = 0,

T ′ + λT = 0.

Then
λn = (n+ 1

2
)2, Xn = sin((n+ 1

2
)x),

Tn = Ane
−(n+

1
2

)2t,

un = Ane
−(n+

1
2

)2t sin((n+ 1
2
)x)

with n = 0, 1, 2, . . .. Therefore the general solution is

u(x, t) =
∞∑
n=0

Ane
−(n+

1
2

)2t sin((n+ 1
2
)x).

Plugging into initial conditions we get

u(x, 0) =
∞∑
n=0

An sin((n+ 1
2
)x) = sin(x).

Therefore

An =
2

π

∫ π

0

sin(x) sin

(
2n+ 1

2
x

)
dx =

1

π

(∫ π

0

cos

(
2n− 1

2
x

)
dx−

∫ π

0

cos

(
2n+ 3

2
x

)
dx

)

=
2

π

 1

2n− 1
sin

(
2n− 1

2
π

)
︸ ︷︷ ︸

(−1)n+1

− 1

2n+ 3
sin

(
2n+ 3

2
π

)
︸ ︷︷ ︸

(−1)n+1

 =
8

π

(−1)n+1

(2n− 1)(2n+ 3)
.

Finally,

u(x, t) =
8

π

∞∑
n=0

(−1)n+1

(2n− 1)(2n+ 3)
e−(2n+1)2t/4 sin((n+ 1

2
)x).
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Problem 1 (Deferred) (5pts). Solve by Fourier method

4utt − uxx = 0, 0 < x < π,

ux|x=0 = ux|x=π = 0,

u|t=0 = sin(x), ut|t=0 = 0.

Solution. Plugging u(x, t) = X(x)T (t) into equation and boundary condi-
tions and separating variables we get

X ′′ + λX = 0,

X ′(0) = X ′(π) = 0,

4T ′′ + λT = 0.

Then
λn = n2, Xn = cos(nx),

Tn = An cos
(n

2
t
)

+Bn sin
(n

2
t
)
,

un =
[
An cos

(n
2
t
)

+Bn sin
(n

2
t
)]

cos(nx)

with n = 1, 2, 3, . . . and also λ0 = 0, X0 = 1
2
, T0 = A0 +B0t,

u0 = 1
2
(A0 +B0t). Therefore the general solution is

u(x, t) = 1
2
(A0 +B0t) +

∞∑
n=1

[
An cos

(n
2
t
)

+Bn sin
(n

2
t
)]

cos(nx).

The initial condition ut|t=0 = 0 implies that all of the Bn = 0. The other
initial condition gives

sin(x) =
1

2
A0 +

∞∑
n=1

cos(nx).

So

A0 =
2

π

∫ π

0

sin(x)dx =
4

π
,

and

An =
2

π

∫ π

0

sin(x) cos(nx) dx =
1

π

(∫ π

0

sin((n+ 1)x) dx−
∫ π

0

sin((n− 1)x) dx

)
=

1

π

([
cos((n− 1)x)

n− 1

]π
0

−
[

cos((n+ 1)x)

n+ 1

]π
0

)
=

1

π

(
(−1)n−1 − 1

n− 1
− (−1)n+1 − 1

n+ 1

)
.

This vanishes for odd n, and for n = 2m even it equals

− 4

(4m2 − 1)π
.

Hence we obtain

u(x, t) =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
cos(nt) cos(2nx).
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Problem 2 (Main) (5pts). In the ring {(r, θ) : 1 < r ≤ 2, −π ≤ θ < π}
find solution

∆u = 0,

ur|r=1 = 0,

u|r=2 = | sin(θ)|.

Solution. In polar coordinates ∆u = urr+r
−1ur+r

−2uθθ. Plugging u(r, θ) =
R(r)Θ(θ) into equation we get (R′′ + r−1R′)Θ + r−2Θ′′ = 0 and separating
variables we get R′′+rR′

R
+ Θ′′

Θ
= 0, and therefore

Θ′′ + λΘ = 0,

Θ 2π − periodic,

R′′ + rR′ − λR = 0.

Then

λ0 = 0, Θ0 =
1

2
,

λn = n2, Θn,1 = cos(nθ), Θn,2 = sin(nθ),

R0 = A0 +B0 ln(r) Rn = Anr
n +Br−n, n = 1, 2, . . .

but since problem is invariant with respect to θ 7→ −θ we may reject odd
Θn. Therefore

u(r, θ) =
1

2
(A0 +B0 ln(r)) +

∞∑
n=1

[
Anr

n +Bnr
−n
]

cos(nθ).

Plugging to boundary conditions we get

ur(1, θ) =
1

2
B0 +

∞∑
n=1

n(An −Bn) cos(nθ) = 0, =⇒ B0 = 0, An = Bn,

u(2, θ) =
1

2
A0 +

∞∑
n=1

An(2n + 2−n) cos(nθ) = | sin(θ)|

and A0 = 2
π

∫ π
0

sin(θ) dθ = 4
π
,

An(2n + 2−n) =
2

π

∫ π

0

sin(θ) cos(nθ) dθ =
1

π

∫ π

0

[
sin((n+ 1)θ)− sin((n− 1)θ)

]
dθ

is 0 for odd n and for even n is equal to − 4
(n2−1)π

. Thus An = 0 for odd n

and A2m = − 4

(4m2 − 1)(22m + 2−2m)
. Finally

u(r, θ) =
2

π
−
∞∑
m=1

4

(4m2 − 1)(22m + 2−2m)

[
r2m + r−2m

]
cos(2mθ).
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Problem 2 (Late) (5pts). In the ring {(r, θ) : 1 < r ≤ 2, −π ≤ θ < π}
find solution

∆u = 0,

u|r=1 = 0,

u|r=2 = θ2.

Solution. In polar coordinates ∆u = urr+r
−1ur+r

−2uθθ. Plugging u(r, θ) =
R(r)Θ(θ) into equation we get (R′′ + r−1R′)Θ + r−2Θ′′ = 0 and separating
variables we get R′′+rR′

R
+ Θ′′

Θ
= 0, and therefore

Θ′′ + λΘ = 0,

Θ 2π − periodic,

R′′ + rR′ − λR = 0.

Then

λ0 = 0, Θ0 =
1

2
,

λn = n2, Θn,1 = cos(nθ), Θn,2 = sin(nθ),

R0 = A0 +B0 ln(r) Rn = Anr
n +Br−n, n = 1, 2, . . .

but since problem is invariant with respect to θ 7→ −θ we may reject odd
Θn. Therefore

u(r, θ) =
1

2
(A0 +B0 ln(r)) +

∞∑
n=1

[
Anr

n +Bnr
−n
]

cos(nθ).

Plugging to boundary conditions we get

u(1, θ) =
1

2
A0 +

∞∑
n=1

(An +Bn) cos(nθ) = 0, =⇒ A0 = 0, An = −Bn,

u(2, θ) =
1

2
B0 ln(2) +

∞∑
n=1

An(2n − 2−n) cos(nθ) = θ2

and B0 = 2
π ln(2)

∫ π
0
θ2 dθ = π

ln(2)
,

An(2n − 2−n) =
2

π

∫ π

0

θ2 cos(nθ) dθ =
2

nπ

∫ π

0

θ2 d sin(nθ) = − 4

nπ

∫ π

0

θ sin(nθ) dθ =

− 4

n2π

∫ π

0

θ d cos(nθ) = − 4

n2π

[
θ cos(nπ)−

∫ π

0

cos(nθ) dθ
]

=
4

n2π
(−1)n−1.

Finally

u(r, θ) =
π

2 ln(2)
ln(r)−

∞∑
n=1

4

n2(2n − 2−n)π
(−1)n−1

[
rn + r−n

]
cos(nθ).
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Problem 2 (Early) (5pts). In the half-disk {(r, θ) : r ≤ 2, 0 < θ < π}
find solution

∆u = 0,

u|θ=0 = u|θ=π = 0,

u|r=2 = θ(π − θ).

Solution. In polar coordinates ∆u = urr+r
−1ur+r

−2uθθ. Plugging u(r, θ) =
R(r)Θ(θ) into equation we get (R′′ + r−1R′)Θ + r−2Θ′′ = 0 and separating
variables we get R′′+rR′

R
+ Θ′′

Θ
= 0, and therefore

Θ′′ + λΘ = 0,

Θ( 2π − periodic)0) = Θ(π) = 0,

R′′ + rR′ − λR = 0.

Then
λn = n2, Θn = sin(nθ),

Rn = Anr
n +Br−n, n = 1, 2, . . .

but since solution must be regular as r = 0 we must reject r−n. Therefore

u(r, θ) =
∞∑
n=1

Anr
n sin(nθ).

Plugging to boundary conditions we get

u(2, θ) =
∞∑
n=1

2nAn sin(nθ) = θ(π − θ)

and

An =
2

2nπ

∫ π

0

θ(π − θ) sin(nθ) dθ = − 2

2nnπ

∫ π

0

θ(π − θ) d cos(nθ) =

2

2nnπ

∫ π

0

(π − 2θ) cos(nθ) dθ =
2

2nn2π

∫ π

0

(π − 2θ) d sin(nθ) =

− 4

2nn2π

∫ π

0

sin(nθ) dθ

which is 0 for even n and − 8
2nn3π

for odd n. Finally

u(r, θ) = −
∞∑
m=0

1

(2m+ 1)322m−2π
r2m sin(2mθ).
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Problem 2 (Deferred) (5pts). In the disk exterior {(r, θ) : r > 1, −π ≤
θ < π} find solution

∆u = 0,

u|r=1 = |θ|,
max |u| <∞.

Solution. In polar coordinates ∆u = urr+r
−1ur+r

−2uθθ. Plugging u(r, θ) =
R(r)Θ(θ) into equation we get (R′′ + r−1R′)Θ + r−2Θ′′ = 0 and separating
variables we get R′′+rR′

R
+ Θ′′

Θ
= 0, and therefore

Θ′′ + λΘ = 0,

Θ 2π − periodic,

R′′ + rR′ − λR = 0.

Then

λ0 = 0, Θ0 =
1

2
,

λn = n2, Θn,1 = cos(nθ), Θn,2 = sin(nθ),

R0 = A0 ln(r) +B0 Rn = Anr
n +Br−n, n = 1, 2, . . .

but must solution must be bounded we must reject ln(r) and rn.

u(r, θ) =
1

2
B0 +

∞∑
n=1

r−n[An cos(nθ) +Bn sin(nθ)].

Plugging to boundary conditions we get

u(1, θ) =
1

2
A0 +

∞∑
n=1

[An cos(nθ) +Bn sin(nθ)] = |θ|,

and since |θ is even function Bn = 0 and A0 = 2
π

∫ π
0
θ dθ = π,

An =
2

π

∫ 2π

0

θ cos(nθ) dθ =
2

nπ

∫ π

0

θ d sin(nθ) = − 2

nπ

∫ π

0

sin(nθ) dθ,

which is 0 for even n and − 4
n2π

or odd n. Finally

u(r, θ) =
π

2
−
∞∑
m=0

4

(2m+ 1)2π
r−2m−1 cos((2m+ 1)θ).
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Problem 3 (Main) (5pts). Find the solution u(x, t) to

utt = −4uxxxx −∞ < x <∞,

u|t=0 =

{
1 |x| < 2,

0 |x| ≥ 2,
ut|t=0 = 0,

max |u| <∞.

Solution. Making partial Fourier transform Fx→ku = û we get

ûtt = −4k4û,

û|t=0 = ĝ, û|t=0 = ĥ

with

ĝ =
1

2π

∫ 2

−2

e−ixk dx =
1

−2ikπ

[
e−2ik − e2ik

]
=

sin(2k)

kπ

and ĥ = 0. Then

û(k, t) =
sin(2k)

kπ
cos(2k2t)

and

u(x, t) =

∫ ∞
−∞

sin(2k)

kπ
cos(2k2t)eikx dk =∫ ∞

0

2 sin(2k)

kπ
cos(2k2t) cos(kx) dk.
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Problem 3 (Late) (5pts). Find the solution u(x, t) to

ut = uxx −∞ < x <∞, t > 0,

u|t=0 =

{
1− x2 |x| < 1,

0 |x| ≥ 1,

max |u| <∞.

Solution. Making partial Fourier transform Fx→ku = û we get

ût = −k2û,

û|t=0 = ĝ,

with

ĝ =
1

2π

∫ 1

−1

(1− x2)e−ixk dx =
1

−ikπ

∫ 1

−1

xe−ixk dx =
1

−k2π

[
xe−ixk

∣∣x=1

x=−1
−
∫ 1

−1

e−ixk dx
]

=

1

k2π

[
− cos(k) + k−1 sin(k)

]
=

1

k3π

[
sin(k)− k cos(k)

]
.

Then

û(k, t) =
1

k3π

[
sin(k)− k cos(k)

]
e−k

2t

u(x, t) =

∫ ∞
−∞

2

k3π

[
k cos(k)− sin(k)

]
e−k

2teikx dk =∫ ∞
0

2

k3π

[
sin(k)− k cos(k)

]
e−k

2t cos(kx) dk.
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Problem 3 (Early) (5pts). Find the solution u(x, t) to

ut = 4uxx −∞ < x <∞, t > 0,

u|t=0 = e−|x|

max |u| <∞.

Solution. Making partial Fourier transform Fx→ku = û we get

ût = −k2û,

û|t=0 = ĝ,

with

ĝ =
1

2π

[∫ 0

−∞
e−ixk+x dx+

∫ ∞
0

e−ixk−x dx
]

=

1

2π

[
(1− ik) + (1 + ik)

]
=

1

(1 + k2)π
.

Then

û(k, t) =
1

(1 + k2)π
e−4k2t

and

u(x, t) =

∫ ∞
−∞

1

(1 + k2)π
e−4k2teikx dk =

∫ ∞
0

2

(1 + k2)π
e−4k2t cos(kx) dk.
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Problem 3 (Deferred) (5pts). Find the solution u(x, t) to

utt = uxx − 4u −∞ < x <∞,

u|t=0 = 0, ut|t=0 = e−x
2/2.

Solution. Making partial Fourier transform Fx→ku = û we get

ûtt = −(k2 + 4)û,

û|t=0 = 0, ût|t=0 = ĥ

with ĥ = 1√
2π
e−k

2/2 (standard F.T.) Then

û(k, t) =
1√

2π(k2 + 4)
e−k

2/2 sin(
√
k2 + 4t)

and

u(x, t) =

∫ ∞
−∞

1√
2π(k2 + 4)

e−k
2/2 sin(

√
k2 + 4t)eikx dk =∫ ∞

0

2√
2π(k2 + 4)

e−k
2/2 sin(

√
k2 + 4t) cos(kx) dk.
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Problem 4 (Main) (5pts). In the half-plane {(x, y) : x > 0, −∞ < y <
∞} find solution

∆u = 0,

u|x=0 = e−|y|,

max |u| <∞.

Solution. Making partial Fourier transform Fy → ku = û we get

ûxx − k2û = 0,

û|x=0 = ĝ(k)

with ĝ(k) = 1
π(k2+1)

. Then û = A(k)e−|k|x+B(k)e|k|x and B(k) = 0 since the

corresponding term is growing with respect to x→ +∞. So û = A(k)e−|k|x

and from the boundary condition we conclude that A(k) = ĝ(k) = 1
π(k2+1)

.
So

û(x, k) =
1

π(k2 + 1)
e−|k|x

and

u(x, y) =

∫ ∞
−∞

1

π(k2 + 1)
e−|k|x+iky dk

=

∫ ∞
0

2

π(k2 + 1)
e−|k|x cos(ky) dk.
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Problem 4 (Late) (5pts). In the half-plane {(x, y) : x > 0, −∞ < y <∞}
find solution

∆u− 4u = 0,

u|x=0 =

{
1− |y|, |y| ≤ 1,

0, |y| ≥ 1,

max |u| <∞.

Solution. Making partial Fourier transform Fy → ku = û we get

ûxx − (k2 + 4)û = 0,

and the Fourier transform of the boundary condition is

ĥ(k) =
1

2π

∫ 1

−1

(1− |y|)e−iky dy =
1

−2ikπ

∫ 1

−1

(1− |y|) de−iky

=
1

2ikπ

∫ 1

−1

e−iky d(1− |y|) =
1

2k2π

[∫ 0

−1

e−iky dy −
∫ 1

0

e−iky dy
]

=
1

2k2π

[
(1− eik)− (e−ik − 1)

]
=

1

k2π
(1− cos(k)).

Then
û = A(k)e−

√
k2+4|x| +B(k)e+

√
k2+4|x|

and boundedness implies that B(k) = 0. So A(k) = ĥ(k), and

û(x, k) =
1

k2π
(1− cos(k))e−

√
k2+4|x|.

So

u(x, y) =

∫ ∞
−∞

1

k2π
(1− cos(k))e−

√
k2+4|x|eiky dk.
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Problem 4 (Early) (5pts). In the half-plane {(x, y) : x > 0, −∞ < y <
∞} find solution

∆u− u = 0,

u|x=0 =

{
cos(y), |y| ≤ π

2
,

0, |y| ≥ π
2
,

max |u| <∞.

Solution. Making partial Fourier transform Fy → ku = û we get

ûxx − (k2 + 1)û = 0,

with Fourier transform of the boundary condition given by

ĥ(k) =
1

2π

∫ π/2

−π/2
cos(y)e−iky dy =

1

π

∫ π/2

−π/2
cos(y) cos(ky) dy

=
1

2π

∫ π/2

−π/2

[
cos((k + 1)y) + cos((k − 1)y)

]
dy

=
1

2π

[ 1

k + 1
sin((k + 1)π/2) +

1

k − 1
sin((k − 1)π/2)

]
=

1

2π
cos(kπ)

[ 1

k + 1
− 1

k − 1

]
= − 1

(k2 − 1)π
cos(kπ).

Then
û = A(k)e−

√
k2+1|x| +B(k)e+

√
k2+1|x|

and boundedness implies that B(k) = 0. So A(k) = ĥ(k), and

û(x, k) = − 1

(k2 − 1)π
cos(kπ)e−

√
k2+1|x|.

Finally,

u(x, y) = −
∫ ∞
−∞

1

(k2 − 1)π
cos(kπ)e−

√
k2+1|x|eiky dk.
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Problem 4 (Deferred) (5pts). In the half-plane {(x, y) : x > 0, −∞ <
y <∞} find solution

∆u = 0,

u|x=0 =

{
1− y2, |y| ≤ 1,

0, |y| ≥ 1,

max |u| <∞.

Solution. Making partial Fourier transform Fy→ku = û we get

ûxx = k2û,

with Fourier transform of the boundary condition given by

ĥ =
1

2π

∫ 1

−1

(1− y2)e−iyk dx =
1

−ikπ

∫ 1

−1

ye−iyk dx =
1

−k2π

[
ye−iyk

∣∣y=1

y=−1
−
∫ 1

−1

e−iyk dy
]

=

1

k2π

[
− cos(k) + k−1 sin(k)

]
=

1

k3π

[
sin(k)− k cos(k)

]
.

Then
û = A(k)e−k|x| +B(k)ek|x|

and boundedness implies that B(k) = 0. So A(k) is equal to the Fourier
transform of the boundary condition, and

û(x, k) =
1

k3π

[
sin(k)− k cos(k)

]
e−k|x|.

Finally,

u(x, y) =

∫ ∞
−∞

1

k3π

[
sin(k)− k cos(k)

]
e−k|x|eiky dk.
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Bonus Problem (Main) (3pts). Suppose that

e−
x2

2 =
1

2

∫ ∞
−∞

e−|x−y|f(y)dy.

Solve explicitly for f(x). (I.e. do not leave your answer in integral form!)

Solution. Equation could be rewritten as

f ∗ g = h

with g(x) = 1
2
e−|x|, h(x) = e−

x2

2 .

Making Fourier transform we get f̂(k)ĝ(k) = ĥ(k). Since

ĝ(k) =
1

2(k2 + 1)π
, ĥ(k) =

1√
2π
e−

k2

2

we get

f̂(k) = 2π(k2 + 1)× 1√
2π
e−

k2

2 .

Then

f(x) = 2π(−∂2
x + 1)e−

x2

2 = 2π(x2 − 1)e−
x2

2 .
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Bonus Problem (Late) (3pts). Suppose that

e−
x2

4 =

∫ 0

−∞
f(x− y)e

1
2
ydy.

Solve explicitly for f(x). (I.e. do not leave your answer in integral form!)

Solution. Equation could be rewritten as

f ∗ g = h

with g(x) =

{
ex x < 0,

0 x ≥ 0,
h(x) = e−

x2

4 .

Making Fourier transform we get f̂(k)ĝ(k) = ĥ(k). Since

ĝ(k) =
1

2(1− ki)π
, ĥ(k) =

1√
π
e−k

2

,

we get

f̂(k) = 2π(1− ki)× 1√
2π
e−k

2

.

Then

f(x) = 2π(1− ∂x)e−
x2

4 = π(2 + x)e−
x2

4 .



19

Bonus Problem (Early) (3pts). Suppose that

e−x
2

=

∫ ∞
0

f(x− y)e−ydy.

Solve explicitly for f(x). (I.e. do not leave your answer in integral form!)

Solution. Equation could be rewritten as

f ∗ g = h

with g(x) =

{
0 x < 0,

ex x ≥ 0
, h(x) = e−x

2
.

Making Fourier transform we get f̂(k)ĝ(k) = ĥ(k). Since

ĝ(k) =
1

2(1 + ki)π
, ĥ(k) =

1√
4π
e−

k2

4 ,

we get

f̂(k) = 2π(1 + ki)× 1√
4π
e−

k2

4 .

Then

f(x) = 2π(1 + ∂x)e
−x2 = 2π(1− 2x)e−x

2

.
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Bonus Problem (Deferred) (3pts). Suppose that

e−
x2

2 =
1√
6π

∫ ∞
−∞

e−2(x−y)2f(y)dy.

Solve explicitly for f(x). (I.e. do not leave your answer in integral form!)

Solution. Equation could be rewritten as

f ∗ g = h

with g(x) = 1√
6π
e−2x2 , h(x) = e−

x2

2 .

Making Fourier transform we get f̂(k)ĝ(k) = ĥ(k). Since

ĝ(k) =
1√
6π
× 1√

8π
e−

k2

8 , ĥ(k) =
1√
2π
e−

k2

2 ,

we get

f̂(k) = 2
√

6πe−
3k2

8 = 8π × 1√
2πa

e−
k2

2a , a = 4
3
.

Then

f(x) = 8πe−
ax2

2 = 8πe−
2x2

3 .


