Solutions to Problem 1

Day, Problem 1A

Problem 1 (5pts). Consider the first order equation:

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=e^{x} \cos (x) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your answer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your answer.

Solution. (a) $t-x-\frac{1}{3} x^{3}=c$
(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Non-unique solution: need more data for characteristics which intersect $t=0$ at $x<$ 0 .

Day, Problem 1B

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+e^{-t} \frac{\partial u}{\partial x}=\tanh \left(t^{2}\right) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x+e^{-t}=c$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Non-unique solution: need more data for characteristics which intersect $t=0$ at $x<0$.

Day, Problem 1C

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\left(x^{2}-1\right) \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0 . \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
Solution. (a) $t+x-\frac{1}{3} x^{3}=c$

(b) IVP:
(i) Solution may not exist: some characteristics intersect $t=0$ multiple times and constraint the initial data. Including this constraint would then give unique solution.
(ii) Solution may not exist and fails uniqueness: even if constraints on initial data coming from characteristics intersecting $t=0$ multiple times are imposed (for existence), still need more data for characteristics which intersect $t=0$ only at $x<0$ (for uniqueness).

Day, Problem 1D

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=(1+t) x^{2} e^{t^{2}} \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x=c e^{t}$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Unique solution: each point in the region $t>0, x>0$ lies on a characteristic that intersects $t=0$ at a point in $x>0$.

Day, Problem 1E

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
x \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=x \sinh \left(t+x^{2}\right) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
Solution. (a) $t-\frac{x^{2}}{2}=c$

(b) IVP:
(i) Solution may not exist: some characteristics intersect $t=0$ multiple times and constraint the initial data. Including this constraint would then give a non-unique solution since some characteristics never intersect $t=0$.
(ii) A non-unique solution exists: characteristics can only have one $x>0$ intersection with $t=0$, but some characteristics still never intersect $t=0$.

Night: Problem 1A

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\left(t^{2}+1\right) u_{t}+u_{x}=x . \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x=\arctan (t)+c$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Non-unique solution: need more data for characteristics which intersect $t=0$ at $x<0$.

Night: Problem 1B

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+t \frac{\partial u}{\partial x}=f(x, t) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x-\frac{t^{2}}{2}=c$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Non-unique solution: need more data for characteristics which intersect $t=0$ at $x<0$.

Night: Problem 1C

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\left(t^{2}+1\right) \frac{\partial u}{\partial t}-2 t x \frac{\partial u}{\partial x}=f(x, t) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x=\frac{c}{t^{2}+1}$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Unique solution: each point in the region $t>0, x>0$ lies on a characteristic that intersects $t=0$ at a point in $x>0$.

Morning: Problem 1A

Problem 1 (5pts). Consider the first order equation

$$
\begin{equation*}
\left(t^{2}+1\right) \frac{\partial u}{\partial t}+2 t x \frac{\partial u}{\partial x}=f(x, t) . \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x=c\left(t^{2}+1\right)$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the plane.
(ii) Unique solution: each point in the region $t>0, x>0$ lies on a characteristic that intersects $t=0$ at a point in $x>0$.

Deferred: Problem 1A

Problem 1 (5pts).

$$
\begin{equation*}
\left(t^{2}-1\right) \frac{\partial u}{\partial t}+2 x \frac{\partial u}{\partial x}=-2 t u \quad(|t|<1) \tag{1.1}
\end{equation*}
$$

(a) Solve for and sketch the characteristic curves for this equation. (Your sketch should be large and clear - make it at least $1 / 3$ of the page!)
(b) Consider the IVP $u(x, 0)=g(x)$ for this PDE:
(i) Does this IVP have a solution on the domain $-\infty<x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.
(ii) Does this IVP have a solution on the domain $0 \leq x<\infty, t>0$? If so, is the solution unique? If not, would some extra constraint on g guarantee existence of a solution? Justify your proofer.

Solution. (a) $x=c \frac{1+t}{1-t}$

(b) IVP:
(i) Unique solution: each characteristic intersects $t=0$ exactly once, and characteristics fill out the strip $\{|t|<1\}$.
(ii) Unique solution: each point in the region $|t|<1, x>0$ lies on a characteristic that intersects $t=0$ at a point in $x>0$.

Solutions to Problem 2

Day, Problem 2A

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=\frac{8 x}{x^{2}+1}, \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle. Use table of integrals. Do not need to make a final substitution.

Solution. By D'Alembert formula

$$
\begin{equation*}
u(x, t)=\frac{1}{2 c} \iint_{\Delta(x, t)} f(\xi, \tau) d \xi d \tau \tag{2.3}
\end{equation*}
$$

where $\Delta(x, t)$ is bounded by $\tau=0, x-\xi-c(t-\tau)=0, x-\xi+c(t-\tau)=0$.

Figure 1: Characteristic triangle

Then the double integral becomes

$$
\begin{equation*}
\frac{1}{2 c} \int_{x-c t}^{x}\left(\int_{0}^{t+c^{-1}(\xi-x)} f(\xi, \tau) d \tau\right) d \xi+\frac{1}{2 c} \int_{x}^{x+c t}\left(\int_{0}^{t-c^{-1}(\xi-x)} f(\xi, \tau) d \tau\right) d \xi \tag{A.2.4}
\end{equation*}
$$

Plugging $c=1$ and $f=\frac{8 \xi}{x^{2}+1}$ we get

$$
\begin{aligned}
u(x, t)=4 & \int_{x-t}^{x} \frac{(t-x+\xi) \xi d \xi}{\xi^{2}+1}+4 \int_{x}^{x+t} \frac{(t+x-\xi) \xi d \xi}{\xi^{2}+1}= \\
& {\left[2(t-x) \ln \left(\xi^{2}+1\right)+4 \xi-4 \arctan (\xi)\right]_{\xi=x-t}^{\xi=x}+} \\
& {\left[2(t+x) \ln \left(\xi^{2}+1\right)-4 \xi+4 \arctan (\xi)\right]_{\xi=x}^{\xi=x+t} . }
\end{aligned}
$$

Day Problem 2B

Problem $2(5 \mathrm{pts})$. Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=16 x e^{-x^{2}} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle.
Use erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$. Do not need to make a final substitution.
Solution. Using Figure 1 and formula (A.2.4 we get

$$
\begin{aligned}
u(x, t)=16 & \int_{x-t}^{x}(t-x+\xi) \xi e^{-\xi^{2}} d \xi+16 \int_{x}^{x+t}(t+x-\xi) \xi e^{-\xi^{2}} d \xi= \\
- & 8 \int_{x-t}^{x}(t-x+\xi) d e^{-\xi^{2}}+-8 \int_{x}^{x+t}(t+x-\xi) d e^{-\xi^{2}}= \\
- & 8\left[(t+x-\xi) e^{-\xi^{2}}\right]_{\xi=x-t}^{\xi=x}-8\left[(t+x-\xi) e^{-\xi^{2}}\right]_{\xi=x}^{\xi=x+t}+ \\
& 8 \int_{x-t}^{x} e^{-\xi^{2}} d \xi-8 \int_{x}^{x+t} e^{-\xi^{2}} d \xi= \\
- & 8\left[(t+x-\xi) e^{-\xi^{2}}-\frac{\sqrt{\pi}}{2} \operatorname{erf}(\xi)\right]_{\xi=x-t}^{\xi=x} \\
- & 8\left[(t+x-\xi) e^{-\xi^{2}}+\frac{\sqrt{\pi}}{2} \operatorname{erf}(\xi)\right]_{\xi=x}^{\xi=x+t} .
\end{aligned}
$$

Day, Problem 2C

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-4 u_{x x}=\frac{8 t}{x^{2}+1} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle. Use table of integrals. Do not need to make a final substitution.

Solution. Using Figure 1 and formula (A.2.4) we get

$$
\begin{aligned}
u(x, t)= & 2 \int_{x-t}^{x} \frac{(t-x+\xi)^{2} d \xi}{\xi^{2}+1}+2 \int_{x}^{x+t} \frac{(t+x-\xi)^{2} d \xi}{\xi^{2}+1}= \\
& {\left[(t-x) \ln \left(\xi^{2}+1\right)+2 \xi+2\left((t-x)^{2}-2\right) \arctan (\xi)\right]_{\xi=x-t}^{\xi=x}+} \\
& {\left[-(t+x) \ln \left(\xi^{2}+1\right)+2 \xi+2\left((t+x)^{2}-2\right) \arctan (\xi)\right]_{\xi=x}^{\xi=x+t} . }
\end{aligned}
$$

Day, Problem 2D

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=16 e^{-x^{2}-2 t} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle.
Use erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$. Do not need to make a final substitution.
Solution. Using Figure 1 and formula (A.2.4 we get

$$
\begin{aligned}
u(x, t)= & 8 \int_{x-t}^{x}\left[e^{-\xi^{2}}-e^{-\xi^{2}-2(t-x+\xi)}\right] d \xi+8 \int_{x}^{x+t}\left[e^{-\xi^{2}}-e^{-\xi^{2}-2(t+x-\xi)}\right] d \xi= \\
& 4 \sqrt{\pi}(\operatorname{erf}(x+t)-\operatorname{erf}(x-t))- \\
& \left.8 \int_{x-t}^{x} e^{-(\xi+1)^{2}-2(t-x)+1} d \xi-8 \int_{x}^{x+t} e^{-(\xi-1)^{2}-2(t+x-\xi)+1}\right] d \xi \\
= & 4 \sqrt{\pi}(\operatorname{erf}(x+t)-\operatorname{erf}(x-t)) \\
- & 4 \sqrt{\pi} e^{2 x-2 t+1}(\operatorname{erf}(x+1)-\operatorname{erf}(x-t+1)) \\
- & 4 \sqrt{\pi} e^{-2 x-2 t+1}(\operatorname{erf}(x+t-1)-\operatorname{erf}(x-1))
\end{aligned}
$$

Night, Problem 2A

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=\frac{8}{\sqrt{x^{2}+1}} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle. Use table of integrals. Do not need to make a final substitution.

Solution. Using Figure 1 and formula (A.2.4) we get

$$
\begin{aligned}
u(x, t)= & 8 \int_{x-t}^{x} \frac{(t-x+\xi) d \xi}{\sqrt{\xi^{2}+1}}+8 \int_{x}^{x+t} \frac{(t+x-\xi) d \xi}{\sqrt{\xi^{2}+1}}= \\
& 8\left[\sqrt{\xi^{2}+1}+(t-x) \ln \left(\xi+\sqrt{\xi^{2}+1}\right)\right]_{\xi=x-t}^{\xi=x}+ \\
& 8\left[-\sqrt{\xi^{2}+1}+(x+t) \ln \left(\xi+\sqrt{\xi^{2}+1}\right)\right]_{\xi=x}^{\xi=x+t}
\end{aligned}
$$

Night, Problem 2B

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=\frac{1}{\cosh ^{2}(x)} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle.
Use erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$. Do not need to make a final substitution.
Solution. Using Figure 1 and formula (A.2.4 we get

$$
\begin{aligned}
u(x, t)= & \int_{x-t}^{x}(t-x+\xi) \cosh ^{-2}(\xi) d \xi+\int_{x}^{x+t}(t+x-\xi) \cosh ^{-2}(\xi) d \xi= \\
& \left.(t-x+\xi) \tanh (\xi)\right|_{x-t} ^{x}-\int_{x-t}^{x} \tanh (\xi) d \xi+ \\
& \left.(t+x-\xi) \cosh ^{-2}(\xi)\right|_{x} ^{x+t}+\int_{x}^{x+t} \tanh (\xi) d \xi= \\
& {[(t-x+\xi) \tanh (\xi)-\ln (\cosh (\xi))]_{x-t}^{x}+} \\
& {[(t+x-\xi) \tanh (\xi)+\ln (\cosh (\xi))]_{x}^{x+t} }
\end{aligned}
$$

Night, Problem 2C

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-4 u_{x x}=\frac{8 t}{\sqrt{x^{2}+1}} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle. Use table of integrals. Do not need to make a final substitution.

Solution. Using Figure 1 and formula (A.2.4) we get

$$
\begin{aligned}
u(x, t)= & 8 \int_{x-t}^{x} \frac{(t-x+\xi)^{2} d \xi}{\sqrt{\xi^{2}+1}}+8 \int_{x}^{x+t} \frac{(t+x-\xi)^{2} d \xi}{\sqrt{\xi^{2}+1}}= \\
& 8 \int_{x-t}^{x}\left[\frac{(t-x)^{2}-1}{\sqrt{\xi^{2}+1}}+\frac{2(t-x) \xi}{\sqrt{\xi^{2}+1}}+\sqrt{\xi^{2}+1}\right] d \xi+ \\
& 8 \int_{x}^{x+t}\left[\frac{(t+x)^{2}-1}{\sqrt{\xi^{2}+1}}-\frac{2(t+x) \xi}{\sqrt{\xi^{2}+1}}+\sqrt{\xi^{2}+1}\right] d \xi= \\
& 4\left[4(t-x) \sqrt{\xi^{2}+1}+\left(2(t-x)^{2}-1\right) \ln \left(\xi+\sqrt{\xi^{2}+1}\right)+\xi \sqrt{\xi^{2}+1}\right]_{\xi=x-t}^{\xi=x}+ \\
& 4\left[-4(t+x) \sqrt{\xi^{2}+1}+\left(2(t+x)^{2}+1\right) \ln \left(\xi+\sqrt{\xi^{2}+1}\right)+\xi \sqrt{\xi^{2}+1}\right]_{\xi=x}^{\xi=x+t} .
\end{aligned}
$$

Morning, Problem 2A

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=16 t e^{-x^{2}-t^{2}} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle.
Use erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$. Do not need to make a final substitution.
Solution. Using Figure 1 and formula (A.2.4 we get

$$
\begin{aligned}
u(x, t)= & 8 \int_{x-t}^{x}\left[e^{-\xi^{2}}-e^{-\xi^{2}-(t-x+\xi)^{2}}\right] d \xi+8 \int_{x}^{x+t}\left[e^{-\xi^{2}}-e^{-\xi^{2}-(t+x-\xi)^{2}}\right] d \xi= \\
& 4 \sqrt{\pi}(\operatorname{erf}(x+t)-\operatorname{erf}(x-t))- \\
& 8 \int_{x-t}^{x} e^{-2\left[\xi+\frac{1}{2}(t-x)\right]^{2}-\frac{1}{2}(t-x)^{2}} d \xi-8 \int_{x}^{x+t} e^{-2\left[\xi-\frac{1}{2}(t+x)\right]^{2}-\frac{1}{2}(t+x)^{2}} d \xi \\
= & 4 \sqrt{\pi}(\operatorname{erf}(x+t)-\operatorname{erf}(x-t)) \\
- & 2 \sqrt{\pi} e^{-\frac{1}{2}(t-x)^{2}}\left(\operatorname{erf}\left(\sqrt{2} x+\frac{1}{\sqrt{2}}(t-x)\right)-\operatorname{erf}\left[\frac{1}{\sqrt{2}}(x-t)\right]\right) \\
- & 2 \sqrt{2 \pi} e^{-\frac{1}{2}(t+x)^{2}}\left(-\operatorname{erf}\left(\sqrt{2} x+\frac{1}{\sqrt{2}}(t+x)\right)+\operatorname{erf}\left[\frac{1}{\sqrt{2}}(x+t)\right]\right) .
\end{aligned}
$$

Deferred, Problem 2A

Problem 2 (5pts). Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=\frac{16 x}{\sqrt{x^{2}+1}} \tag{2.1}\\
& \left.u\right|_{t=0}=0,\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

Hint: Change order of integration over characteristic triangle.
Use erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$. Do not need to make a final substitution.
Solution. Using Figure 1 and formula (A.2.4 we get

$$
\begin{aligned}
u(x, t)= & 8 \int_{x-t}^{x} \frac{(t-x+\xi) \xi d \xi}{\sqrt{\xi^{2}+1}}+8 \int_{x}^{x+t} \frac{(t+x-\xi) \xi d \xi}{\sqrt{\xi^{2}+1}}= \\
& 8 \int_{x-t}^{x}\left[-\frac{1}{\sqrt{\xi^{2}+1}}+\frac{(t-x) \xi}{\sqrt{\xi^{2}+1}}+\sqrt{\xi^{2}+1}\right] d \xi+ \\
& 8 \int_{x}^{x+t}\left[\frac{1}{\sqrt{\xi^{2}+1}}+\frac{(t+x) \xi}{\sqrt{\xi^{2}+1}}-\sqrt{\xi^{2}+1}\right] d \xi= \\
& 4\left[2(t-x) \sqrt{\xi^{2}+1}-\ln \left(\xi+\sqrt{\xi^{2}+1}\right)+\xi \sqrt{\xi^{2}+1}\right]_{\xi=x-t}^{\xi=x}+ \\
& 4\left[2(t+x) \sqrt{\xi^{2}+1}+\ln \left(\xi+\sqrt{\xi^{2}+1}\right)-\xi \sqrt{\xi^{2}+1}\right] \begin{array}{l}
\xi=x+t
\end{array} .
\end{aligned}
$$

Solutions to Problem 3

Day, Problem 3A

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=0, & t>0, x>-t, \\
\left.u\right|_{t=0}=4 \sin (x), & x>0, \\
\left.u_{t}\right|_{t=0}=0, & x>0, \\
\left.u_{x}\right|_{x=-t}=0, & t>0 .
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+2 t)+\psi(x-2 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(x)+\psi(x)=4 \sin (x), \quad 2 \phi^{\prime}(x)-2 \psi^{\prime}(x)=0 \Longrightarrow \phi(x)=\psi(x)=2 \sin (x)$
as $x>0$ and

$$
u(x, t)=2 \sin (x+2 t)+2 \sin (x-2 t)=4 \sin (x) \cos (2 t) \quad \text { as } \quad x>2 t
$$

Plugging into (3.4) we get $2 \cos (t)+\psi^{\prime}(-3 t)=0$ as $t>0$ or $\psi^{\prime}(x)=-2 \cos (x / 3)$ and then $\psi(x)=-6 \sin (x / 3)+C$ as $x<0$ and $u(x, t)=2 \sin (x+2 t)-6 \sin ((x-2 t) / 3)+C$ as $-t<x<2 t$.
Continuity at $(0,0)$ implies $C=0$ and

$$
u(x, t)=2 \sin (x+2 t)-6 \sin \left(\frac{1}{3}(x-2 t)\right) \quad \text { as } \quad-t<x<2 t .
$$

Day, Problem 3B

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-9 u_{x x}=0, & t>0, x>t, \\
\left.u\right|_{t=0}=12 \sin (x), & x>0, \\
\left.u_{t}\right|_{t=0}=0, & x>0, \\
\left.u\right|_{x=t}=0, & t>0 .
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+3 t)+\psi(x-3 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(x)+\psi(x)=12 \sin (x), \quad 3 \phi^{\prime}(x)-3 \psi^{\prime}(x)=0 \Longrightarrow \phi(x)=\psi(x)=6 \sin (x)$
as $x>0$ and

$$
u(x, t)=6 \sin (x+3 t)+6 \sin (x-2 t)=12 \sin (x) \cos (3 t) \quad \text { sas } \quad x>3 t .
$$

Plugging into (3.4) we get $6 \sin (4 t)+\psi(-2 t)=0$ as $t>0$ or $\psi(x)=6 \sin (2 x)$ as $x<0$ and

$$
u(x, t)=6 \sin (x+2 t)+6 \sin (2(x-2 t)) \quad \text { as } t<x<3 t .
$$

Day, Problem 3C

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0, & t>0, x>0, \\
\left.u\right|_{t=0}=2 \cos (x), & x>0, \\
\left.u_{t}\right|_{t=0}=0, & x>0, \\
\left.\left(u_{x}+u\right)\right|_{x=0}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+t)+\psi(x-t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into $(3.2)-(\sqrt{3.3)}$ we get

$$
\phi(x)+\psi(x)=2 \cos (x), \quad \phi^{\prime}(x)-\psi^{\prime}(x)=0 \Longrightarrow \phi(x)=\psi(x)=\cos (x)
$$

as $x>0$ and

$$
u(x, t)=\cos (x+t)+\cos (x-t)=2 \cos (x) \cos (t) \quad \text { as } x>t
$$

Plugging into (3.4) we get $\sin (t)+\cos (t)+\psi^{\prime}(-t)+\psi(-t)=0$ as $t>0$ or $\psi^{\prime}+\psi=\sin (x)-\cos (x)$ as $x<0$. Then $\left(\psi e^{x}\right)^{\prime}=(\sin (x)+\cos (x)) e^{x} \Longrightarrow$ $\psi e^{x}=\sin (x) e^{x}+C \Longrightarrow \psi(x)=\sin (x)+C e^{-x}$ and

$$
u(x, t)=\cos (x+t)+\sin (x-t)+C e^{-x+t} \quad \text { as } 0<x<t
$$

Continuity at $(0,0)$ implies $C=1$ and

$$
u(x, t)=\cos (x+t)+\sin (x-t)+e^{-x+t} \quad \text { as } \quad 0<x<t
$$

Day, Problem 3D

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=0, & t>0, x>-t, \\
\left.u\right|_{t=0}=0, & x>0, \\
\left.u_{t}\right|_{t=0}=4 \sin (x), & x>0, \\
\left.u\right|_{x=-t}=0, & t>0 .
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+2 t)+\psi(x-2 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(x)+\psi(x)=0, \quad 2 \phi^{\prime}(x)-2 \psi^{\prime}(x)=4 \sin (x) \Longrightarrow \phi(x)=-\psi(x)=-\cos (x)$
as $x>0$ and

$$
u(x, t)=-\cos (x+2 t)+\cos (x-2 t)=2 \sin (x) \sin (2 t) \quad \text { as } \quad x>2 t
$$

Plugging into (3.4) we get $-\cos (t)+\psi(-3 t)=0$ as $t>0$ or $\psi(x)=\cos (x / 3)$ as $x<0$ and

$$
u(x, t)=-\cos (x+2 t)+\cos ((x-2 t) / 3) \quad \text { as } \quad-t<x<2 t
$$

Day, Problem 3E

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-9 u_{x x}=0, & t>0, x>t, \\
\left.u\right|_{t=0}=0, & x>0, \\
\left.u_{t}\right|_{t=0}=12 \sin (x), & x>0, \\
\left.u_{x}\right|_{x=t}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+3 t)+\psi(x-3 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into $(3.2)-(\sqrt{3.3})$ we get
$\phi(x)+\psi(x)=0, \quad 3 \phi^{\prime}(x)-3 \psi^{\prime}(x)=12 \sin (x) \Longrightarrow \phi(x)=-\psi(x)=-2 \cos (x)$
as $x>0$ and

$$
u(x, t)=-2 \cos (x+3 t)+2 \cos (x-2 t)=4 \sin (x) \sin (3 t) \quad \text { as } \quad x>3 t
$$

Plugging into (3.4) we get $2 \sin (4 t)+\psi^{\prime}(-2 t)=0$ as $t>0$ or $\psi^{\prime}(x)=2 \sin (2 x) \Longrightarrow \psi(x)=-\cos (2 x)+C$ as $x<0$ and $u(x, t)=$ $-2 \cos (x+2 t)-\cos (2(x-2 t))+C$ as $t<x<3 t$. Continuity at $(0,0)$ implies $C=3$ and

$$
u(x, t)=-2 \cos (x+2 t)-\cos (2(x-2 t))+3 \quad \text { as } t<x<3 t .
$$

Day, Problem 3F

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0, & t>0, x>0, \\
\left.u\right|_{t=0}=0, & x>0, \\
\left.u_{t}\right|_{t=0}=2 \cos (x), & x>0, \\
\left.\left(u_{x}-u\right)\right|_{x=0}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+t)+\psi(x-t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into $(3.2)-(3.3)$ we get

$$
\phi(x)+\psi(x)=0, \quad \phi^{\prime}(x)-\psi^{\prime}(x)=2 \cos (x) \Longrightarrow \phi(x)=-\psi(x)=\sin (x)
$$

as $x>0$ and

$$
u(x, t)=\sin (x+t)-\sin (x-t)=2 \cos (x) \sin (t) \quad \text { as } \quad x>t .
$$

Plugging into (3.4) we get $\cos (t)-\sin (t)+\psi^{\prime}(-t)-\psi(-t)=0$ as $t>0$ or $\psi^{\prime}-\psi=-\sin (x)-\cos (x)$ as $x<0$. Then $\left(\psi e^{-x}\right)^{\prime}=-(\sin (x)+$ $\cos (x)) e^{-x} \Longrightarrow \psi e^{-x}=\cos (x) e^{-x}+C \quad \Longrightarrow \psi(x)=\cos (x)+C e^{x}$ and $u(x, t)=\sin (x+t)+\cos (x-t)+C e^{x-t}$ as $0<x<t$.
Continuity at $(0,0)$ implies $C=-1$ and

$$
u(x, t)=\sin (x+t)+\cos (x-t)-e^{x-t} \quad \text { as } 0<x<t
$$

$$
t
$$

$$
u(x, t)=\sin (x+t)+\cos (x-t)-e^{x-t}
$$

$$
u(x, t)=2 \cos (x) \sin (t)
$$

Night, Problem 3A

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=0, & t>0, x>-2 t, \\
\left.u\right|_{t=0}=4 \sin (x), & x>0, \\
\left.u_{t}\right|_{t=0}=0, & x>0, \\
\left.u_{x}\right|_{x=-2 t}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+2 t)+\psi(x-2 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into $(3.2)-(3.3)$ we get

$$
\phi(x)+\psi(x)=4 \sin (x), \quad 2 \phi^{\prime}(x)-2 \psi^{\prime}(x)=0 \Longrightarrow \phi(x)=\psi(x)=2 \sin (x)
$$

as $x>0$ and

$$
u(x, t)=2 \sin (x+2 t)+2 \sin (x-2 t)=4 \sin (x) \cos (2 t) \quad \text { as } \quad x>2 t
$$

Plugging into (3.4) we get $2 \cos (0)+\psi^{\prime}(-4 t)=0$ as $t>0$ or $\psi^{\prime}(x)=-2$ and then $\psi(x)=-2 x+C$ as $x<0$ and

$$
u(x, t)=2 \sin (x+2 t)-2(x-2 t)+C \quad \text { as } \quad-2 t<x<2 t .
$$

Continuity at $(0,0)$ implies $C=0$ and

$$
u(x, t)=2 \sin (x+2 t)-2(x-2 t) \quad \text { as } \quad-2 t<x<2 t .
$$

Night, Problem 3B

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=0, & t>0, x>-2 t, \\
\left.u\right|_{t=0}=0, & x>0, \\
\left.u_{t}\right|_{t=0}=4 \sin (x), & x>0, \\
\left.u\right|_{x=-2 t}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+2 t)+\psi(x-2 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(x)+\psi(x)=0, \quad 2 \phi^{\prime}(x)-2 \psi^{\prime}(x)=4 \sin (x) \Longrightarrow \phi(x)=-\psi(x)=-\cos (x)$
as $x>0$ and

$$
u(x, t)=-\cos (x+3 t)+\cos (x-2 t)=2 \sin (x) \sin (2 t) \quad \text { sas } x>2 t
$$

Plugging into (3.4) we get $-\cos (0)+\psi(-4 t)=0$ as $t>0$ or $\psi(x)=1$ as $x<0$ and

$$
u(x, t)=-\cos (x+2 t)+1 \quad \text { as } \quad-2 t<x<3 t
$$

Night, Problem 3C

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0, & t>0, x>-2 t, \\
\left.u\right|_{t=0}=2 \sin (x), & x>0, \\
\left.u_{t}\right|_{t=0}=0, & x>0, \\
\left.u\right|_{x=-2 t}=0, & t>0, \\
\left.u_{x}\right|_{x=-2 t}=0, & t>0 . \tag{3.5}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+t)+\psi(x-t) \tag{3.6}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-3.3) we get

$$
\phi(x)+\psi(x)=2 \sin (x), \quad \phi^{\prime}(x)-\psi^{\prime}(x)=0 \Longrightarrow \phi(x)=\psi(x)=\sin (x)
$$

as $x>0$ and

$$
u(x, t)=\sin (x+t)+\sin (x-t)=2 \sin (x) \cos (t) \quad \text { as } \quad x>t
$$

Plugging into (3.4)-(3.5) we get $\phi(-t)+\psi(-3 t)=0$ and $\phi^{\prime}(-t)+\psi^{\prime}(-3 t)=$ 0 as $t>0$ or $\phi(x)=-\psi(x)=C$ as $x<0$. Then

$$
\begin{array}{ll}
u(x, t)=\sin (x+t)-C & \text { as }-t<x<t \\
u(x, t)=0 \text { as }-2 t<x<-t . &
\end{array}
$$

Continuity at $(0,0)$ implies $C=0$ and

$$
u(x, t)=\sin (x+t) \quad \text { as } \quad-t<x<t
$$

Morning, Problem 3A

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-4 u_{x x}=0, & t>0,-2 t<x<2 t, \\
\left.u\right|_{x=2 t}=4 \cos (4 t)+\sin (4 t), & t>0, \\
\left.u\right|_{x=-2 t}=4 \cos (4 t)+3 \sin (4 t), & x>0, \tag{3.3}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+2 t)+\psi(x-2 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get

$$
\begin{array}{ll}
\phi(4 t)+\psi(0)=4 \cos (4 t)+\sin (4 t), & \phi(0)+\psi(4 t)=4 \cos (4 t)+3 \sin (4 t) \Longrightarrow \\
\phi(x)=4 \cos (x)+\sin (x), & \psi(x)=4 \cos (x)+3 \sin (x)-4
\end{array}
$$

as $x>0$, where we can arbitrarily select $\psi(0)=0$ and then $\phi(0)=4$. Then

$$
u(x, t)=4 \cos (x+2 t)+\sin (x+2 t)+4 \cos (x-2 t)+3 \sin (x-2 t)-4
$$

Deferred, Problem 3A

Problem 3 (5pts). Find continuous solution to

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0, & t>0,2 t>x>-2 t, \\
\left.u\right|_{x=2 t}=12 \sin (6 t), & t>0, \\
\left.u_{t}\right|_{x=2 t}=0, & t>0, \\
\left.u\right|_{x=-2 t}=4 \sin (6 t), & t>0, \\
\left.u_{t}\right|_{x=-2 t}=0, & t>0 . \tag{3.5}
\end{array}
$$

Solution. Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+t)+\psi(x-t) \tag{3.6}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(3 t)+\psi(t)=12 \sin (6 t), \quad \phi^{\prime}(3 t)-\psi^{\prime}(t)=0 \Longrightarrow \phi(3 t)-3 \psi(t)=0 \Longrightarrow$
$\phi(x)=9 \sin (2 x), \quad \psi(x)=3 \sin (6 x) \quad$ as $\quad x>0$
and plugging (3.1) into (3.4)-3.5 we get
$\phi(-t)+\psi(-3 t)=4 \sin (6 t), \quad \phi^{\prime}(-t)-\psi^{\prime}(-3 t)=0 \Longrightarrow 3 \phi(-t)-\psi(-t)=0 \Longrightarrow$ $\phi(x)=\sin (6 x), \quad \psi(x)=3 \sin (2 x) \quad$ as $\quad x<0$.

Here we select $\phi(0)=0$ arbitrarily and then $\psi(0)=0$ and we want ϕ and ψ to be continuous at 0 . Then

$$
u(x, t)= \begin{cases}9 \sin (2 x+2 t)+3 \sin (6 x-6 t) & t<x<2 t \\ 9 \sin (2 x+2 t)+3 \sin (2 x-2 t) & -t<x<t \\ \sin (6 x+6 t)+3 \sin (2 x-2 t) & -2 t<x<-t\end{cases}
$$

Solutions to Problem 4

Day, Problem 4A

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{align*}
& u_{t}=4 u_{x x} \tag{4.1}\\
& \left.u\right|_{t=0}=\left\{\begin{array}{rl}
-1 & -1<x<0, \\
1 & 0<x<1, \\
0 & |x| \geq 1,
\end{array}\right. \tag{4.2}\\
& \max |u|<\infty . \tag{4.3}
\end{align*}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.
Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{16 \pi t}}\left(-\int_{-1}^{0} e^{-\frac{1}{16 t}(x-y)^{2}} d y+\int_{0}^{1} e^{-\frac{1}{16 t}(x-y)^{2}} d y\right)
\end{aligned}
$$

after $y=x+4 z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-(x+1) / 4 \sqrt{t}}^{-x / 4 \sqrt{t}} e^{-z^{2}} d z+\int_{-x / 4 \sqrt{t}}^{-(x-1) / 4 \sqrt{t}} e^{-z^{2}} d z\right) \\
& =\frac{1}{2}\left(-\operatorname{erf}\left(-\frac{x}{4 \sqrt{t}}\right)+\operatorname{erf}\left(-\frac{x+1}{4 \sqrt{t}}\right)+\operatorname{erf}\left(-\frac{x-1}{4 \sqrt{t}}\right)-\operatorname{erf}\left(-\frac{x}{4 \sqrt{t}}\right)\right) \\
& \left.=\operatorname{erf}\left(\frac{x}{4 \sqrt{t}}\right)-\frac{1}{2} \operatorname{erf}\left(\frac{x+1}{4 \sqrt{t}}\right)-\frac{1}{2} \operatorname{erf}\left(\frac{x-1}{4 \sqrt{t}}\right)\right) .
\end{aligned}
$$

Day, Problem 4B

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{array}{ll}
4 u_{t}=u_{x x} & -\infty<x<\infty, t>0, \\
\left.u\right|_{t=0}=e^{-|x|} \\
\max |u|<\infty \tag{4.3}
\end{array}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.

Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{\pi t}}\left(\int_{-\infty}^{0} e^{-\frac{1}{t}(x-y)^{2}+y} d y+\int_{0}^{\infty} e^{-\frac{1}{t}(x-y)^{2}-y} d y\right)
\end{aligned}
$$

after $y=x+z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}} e^{-z^{2}+x+z \sqrt{t}} d z+\int_{-x / \sqrt{t}}^{\infty} e^{-\frac{1}{t} z^{2}-x-z \sqrt{t}} d z\right) \\
& =\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}} e^{-(z-\sqrt{t} / 2)^{2}+x+t / 4} d z+\int_{-x / \sqrt{t}}^{\infty} e^{-(z+\sqrt{t} / 2)^{2}-x+t / 4} d z\right) \\
& =\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}-\sqrt{t} / 2} e^{-s^{2}+x+t / 4} d s+\int_{-x / \sqrt{t}+\sqrt{t} / 2}^{\infty} e^{-s^{2}-x+t / 4} d s\right)=
\end{aligned}
$$

after $z=s \pm \sqrt{t} / 2$ in the first/second integrals we need to change also limits

$$
\frac{1}{2} e^{x+t / 4}\left(1-\operatorname{erf}\left(\frac{x}{\sqrt{t}}+\frac{\sqrt{t}}{2}\right)\right)+\frac{1}{2} e^{-x+t / 4}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{t}}-\frac{\sqrt{t}}{2}\right)\right)
$$

Day, Problem 4C

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{align*}
& u_{t}=4 u_{x x} \tag{4.1}\\
& \left.u\right|_{t=0}= \begin{cases}1-x^{2} & |x|<1, \\
0 & |x| \geq 1,\end{cases} \tag{4.2}\\
& \max |u|<\infty . \tag{4.3}
\end{align*}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.
Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{16 \pi t}} \int_{-1}^{1} e^{-\frac{1}{16 t}(x-y)^{2}}\left(1-y^{2}\right) d y
\end{aligned}
$$

after $y=x+4 z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}} \int_{-(x+1) / 4 \sqrt{t}}^{-(x-1) / 4 \sqrt{t}} e^{-z^{2}}\left(1-(x+4 z \sqrt{t})^{2}\right) d z \\
& =\frac{1}{\sqrt{\pi}} \int_{-(x+1) / 4 \sqrt{t}}^{-(x-1) / 4 \sqrt{t}} e^{-z^{2}}\left(1-x^{2}-8 z \sqrt{t}-16 z^{2} t\right) d z \\
& =\frac{1}{\sqrt{\pi}}\left[\int_{(x-1) / 4 \sqrt{t}}^{(x+1) / 4 \sqrt{t}} e^{-z^{2}}\left(1-x^{2}\right) d z+\left.4 \sqrt{t} e^{-z^{2}}\right|_{z=(x-1) / 4 \sqrt{t}} ^{z=(x+1) / 4 \sqrt{t}}+8 \int_{(x-1) / 4 \sqrt{t}}^{(x+1) / 4 \sqrt{t}} z t d e^{-z^{2}}\right] \\
& =\frac{1}{\sqrt{\pi}} \int_{(x-1) / 4 \sqrt{t}}^{(x+1) / 4 \sqrt{t}} e^{-z^{2}}\left(1-x^{2}-8 t\right) d z+\left.\frac{4}{\sqrt{\pi}}(\sqrt{t}+2 z t) e^{-z^{2}}\right|_{z=(x+1) / 4 \sqrt{t}} ^{z=(x-1) / 4 \sqrt{t}} \\
& =\frac{1}{2}\left(1-x^{2}-8 t\right)\left[\operatorname{erf}\left(\frac{(x+1)}{4 \sqrt{t}}\right)-\operatorname{erf}\left(\frac{(x-1)}{4 \sqrt{t}}\right)\right]+\left.\frac{4}{\sqrt{\pi}}(\sqrt{t}+2 z t) e^{-z^{2}}\right|_{z=(x-1) / 4 \sqrt{t}} ^{z=(x+1) / 4 \sqrt{t}} .
\end{aligned}
$$

Day, Problem 4D

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{align*}
& 4 u_{t}=u_{x x} \tag{4.1}\\
& \left.u\right|_{t=0}=\left\{\begin{aligned}
-e^{-|x|} & x<0, \\
e^{-|x|} & x>0,
\end{aligned}\right. \tag{4.2}\\
& \max |u|<\infty . \tag{4.3}
\end{align*}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.
Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{\pi t}}\left(-\int_{-\infty}^{0} e^{-\frac{1}{t}(x-y)^{2}+y} d y+\int_{0}^{\infty} e^{-\frac{1}{t}(x-y)^{2}-y} d y\right)
\end{aligned}
$$

after $y=x+z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}} e^{-z^{2}+x+z \sqrt{t}} d z+\int_{-x / \sqrt{t}}^{\infty} e^{-\frac{1}{t} z^{2}-x-z \sqrt{t}} d z\right) \\
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}} e^{-(z-\sqrt{t} / 2)^{2}+x+t / 4} d z+\int_{-x / \sqrt{t}}^{\infty} e^{-(z+\sqrt{t} / 2)^{2}-x+t / 4} d z\right) \\
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}-\sqrt{t} / 2} e^{-s^{2}+x+t / 4} d s+\int_{-x / \sqrt{t}+\sqrt{t} / 2}^{\infty} e^{-s^{2}-x+t / 4} d s\right)=
\end{aligned}
$$

after $z=s \pm \sqrt{t} / 2$ in the first/second integrals we need to change also limits

$$
\frac{1}{2} e^{x+t / 4}\left(-1+\operatorname{erf}\left(\frac{x}{\sqrt{t}}+\frac{\sqrt{t}}{2}\right)\right)+\frac{1}{2} e^{-x+t / 4}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{t}}-\frac{\sqrt{t}}{2}\right)\right)
$$

Day, Problem 4E

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{align*}
& u_{t}=4 u_{x x} \tag{4.1}\\
& \left.u\right|_{t=0}= \begin{cases}1-|x| & |x|<1, \\
0 & |x| \geq 1,\end{cases} \tag{4.2}\\
& \max |u|<\infty . \tag{4.3}
\end{align*}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.
Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{16 \pi t}}\left(\int_{-1}^{0} e^{-\frac{1}{16 t}(x-y)^{2}}(1+y) d y+\int_{0}^{1} e^{-\frac{1}{16 t}(x-y)^{2}}(1-y) d y\right)
\end{aligned}
$$

after $y=x+4 z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(\int_{-(x+1) / 4 \sqrt{t}}^{-x / 4 \sqrt{t}} e^{-z^{2}}(1+x+4 z \sqrt{t}) d z+\int_{-x / 4 \sqrt{t}}^{-(x-1) / 4 \sqrt{t}} e^{-z^{2}}(1-x-4 z \sqrt{t}) d z\right) \\
& =\frac{1}{2}(1+x)\left(\operatorname{erf}\left(\frac{x+1}{4 \sqrt{t}}\right)-\operatorname{erf}\left(\frac{x}{4 \sqrt{t}}\right)\right)+\frac{1}{2}(1-x)\left(\operatorname{erf}\left(\frac{x}{4 \sqrt{t}}\right)-\operatorname{erf}\left(\frac{x-1}{4 \sqrt{t}}\right)\right) \\
& +\frac{2 \sqrt{t}}{\sqrt{\pi}}\left(\left.e^{-z^{2}}\right|_{z=x / 4 \sqrt{t}} ^{z=(x+1) / 4 \sqrt{t}}+\left.e^{-z^{2}}\right|_{z=x / 4 \sqrt{t}} ^{z=(x-1) / 4 \sqrt{t}}\right) .
\end{aligned}
$$

Night, Problem 4A

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{align*}
& u_{t}=9 u_{x x} \tag{4.1}\\
& \left.u\right|_{t=0}=\left\{\begin{array}{rl}
-1 & x<-1 \\
x & |x| \leq 1, \\
1 & x \geq 1
\end{array}\right. \tag{4.2}\\
& \max |u|<\infty \tag{4.3}
\end{align*}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and $\operatorname{use} \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.
Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{36 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{36 t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{36 \pi t}}\left(-\int_{-\infty}^{-1} e^{-\frac{1}{36 t}(x-y)^{2}} d y+\int_{-1}^{1} y e^{-\frac{1}{36 t}(x-y)^{2}} d y+\int_{1}^{\infty} e^{-\frac{1}{36 t}(x-y)^{2}} d y\right)
\end{aligned}
$$

after $y=x+9 z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
= & \frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{(-1-x) / 9 \sqrt{t}} e^{-z^{2}} d z+\int_{(-1-x) / 9 \sqrt{t}}^{(1-x) / 9 \sqrt{t}}(x+9 z \sqrt{t}) e^{-z^{2}} d z+\int_{(1-x) / 9 \sqrt{t}}^{\infty} e^{-z^{2}} d z\right) \\
= & -\frac{1}{2}-\frac{1}{2} \operatorname{erf}((-1-x) / 9 \sqrt{t})+\frac{1}{2} x(\operatorname{erf}((1-x) / 9 \sqrt{t})-\operatorname{erf}((-1-x) / 9 \sqrt{t})) \\
& +\frac{1}{\sqrt{\pi}} \int_{(-1-x) / 9 \sqrt{t}}^{(1-x) / 9 \sqrt{t}} 9 z \sqrt{t} e^{-z^{2}} d z+\frac{1}{2}-\frac{1}{2} \operatorname{erf}((1-x) / 9 \sqrt{t}) \\
= & \frac{1}{2}(x+1) \operatorname{erf}((x+1) / 9 \sqrt{t})-\frac{1}{2}(x-1) \operatorname{erf}((x-1) / 9 \sqrt{t})++\left.\frac{9 \sqrt{t}}{2 \sqrt{\pi}} e^{-z^{2}}\right|_{(x-1) / 9 \sqrt{t}} ^{(x+1) / 9 \sqrt{t}} .
\end{aligned}
$$

Night, Problem 4B

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{array}{ll}
4 u_{t}=u_{x x} & -\infty<x<\infty, t>0, \\
\left.u\right|_{t=0}=x e^{-2|x|} \\
\max |u|<\infty \tag{4.3}
\end{array}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.

Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{\pi t}}\left(\int_{-\infty}^{0} y e^{-\frac{1}{t}(x-y)^{2}+2 y} d y+\int_{0}^{\infty} y e^{-\frac{1}{1 t}(x-y)^{2}-2 y} d y\right)
\end{aligned}
$$

after $y=x+z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}}(x+z \sqrt{t}) e^{-z^{2}+2 x+2 z \sqrt{t}} d z+\int_{-x / \sqrt{t}}^{-\infty}(x+z \sqrt{t}) e^{-z^{2}-2 x-2 z \sqrt{t}} d z\right)= \\
& =\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}}(x+z \sqrt{t}) e^{-(z-\sqrt{t})^{2}+2 x+t} d z+\int_{-x / \sqrt{t}}^{\infty}(x+z \sqrt{t}) e^{-(z+\sqrt{t})^{2}-2 x+t} d z\right)
\end{aligned}
$$

after $z=w \pm \sqrt{t}$ in the first/second integrals we need to change also limits

$$
\begin{aligned}
= & \frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{-x / \sqrt{t}-\sqrt{t}}(x+w \sqrt{t}+t) e^{-w^{2}+2 x+t} d w+\right. \\
= & \frac{1}{2}(x+t) e^{2 x+t}(1+\operatorname{erf}(-x / \sqrt{t}-\sqrt{t})) \\
& +\frac{1}{2}(x-t) e^{-x+t}(1-\operatorname{erf}(-x / \sqrt{t}-\sqrt{t})) \\
& +\frac{\sqrt{t}}{2 \sqrt{\pi}}\left(-\left.e^{-w^{2}+2 x+t}\right|_{w=-x / \sqrt{t}-\sqrt{t}}+e^{-w^{2}-2 x+t} d w\right) \\
w^{2}-2 x+t & \left.\left.\right|_{w=-x / \sqrt{t}+\sqrt{t}}\right)
\end{aligned}
$$

(where the last line $=0$).

Night, Problem 4C

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{array}{ll}
u_{t}=4 u_{x x} & -\infty<x<\infty, t>0, \\
\left.u\right|_{t=0}=x e^{-x^{2}} \\
\max |u|<\infty \tag{4.3}
\end{array}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.

Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}} g(y) d y=\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}-y^{2}} y d y \\
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\left(\frac{1}{16 t}+1\right) y^{2}+\frac{1}{8 t} x y-\frac{1}{16 t} x^{2}\right] y d y \\
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\frac{(16 t+1)}{16 t}\left(y-\frac{x}{16 t+1}\right)^{2}-\frac{x^{2}}{16 t+1}\right] y d y
\end{aligned}
$$

and changing variables $y=z+\frac{x}{16 t+1}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\frac{(16 t+1)}{16 t} z^{2}-\frac{x^{2}}{16 t+1}\right]\left(z+\frac{x}{(16 t+1)}\right) d z \\
& =\frac{x}{\sqrt{16 \pi t}(16 t+1)} e^{-\frac{x^{2}}{16 t+1}} \int_{-\infty}^{\infty} e^{-\frac{(16 t+1)}{16 t} z^{2}} d z \\
& =\frac{x}{\sqrt{16 \pi t}(16 t+1)} e^{-\frac{x^{2}}{16 t+1}} \times \frac{\sqrt{16 t}}{\sqrt{16 t+1}} \int_{-\infty}^{\infty} e^{-w^{2}} \\
& =\frac{x}{(16 t+1)^{3 / 2}} e^{-x^{2} /(16 t+1)} .
\end{aligned}
$$

Morning, Problem 4A

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{array}{ll}
4 u_{t}=u_{x x} & -\infty<x<\infty, t>0 \\
\left.u\right|_{t=0}=|x| e^{-2|x|} \\
\max |u|<\infty \tag{4.3}
\end{array}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.

Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{t}(x-y)^{2}} g(y) d y \\
& =\frac{1}{\sqrt{\pi t}}\left(-\int_{-\infty}^{0} y e^{-\frac{1}{t}(x-y)^{2}+2 y} d y+\int_{0}^{\infty} y e^{-\frac{1}{t}(x-y)^{2}-2 y} d y\right)
\end{aligned}
$$

after $y=x+z \sqrt{t}$ we need to change also limits

$$
\begin{aligned}
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}}(x+z \sqrt{t}) e^{-z^{2}+2 x+2 z \sqrt{t}} d z+\int_{-x / \sqrt{t}}^{-\infty}(x+z \sqrt{t}) e^{-z^{2}-2 x-2 z \sqrt{t}} d z\right)= \\
& =\frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}}(x+z \sqrt{t}) e^{-(z-\sqrt{t})^{2}+2 x+t} d z+\int_{-x / \sqrt{t}}^{\infty}(x+z \sqrt{t}) e^{-(z+\sqrt{t})^{2}-2 x+t} d z\right)
\end{aligned}
$$

after $z=w \pm \sqrt{t}$ in the first/second integrals we need to change also limits

$$
\begin{aligned}
&= \frac{1}{\sqrt{\pi}}\left(-\int_{-\infty}^{-x / \sqrt{t}-\sqrt{t}}(x+w \sqrt{t}+t) e^{-w^{2}+2 x+t} d w+\right. \\
&=\left.\int_{-x / \sqrt{t}+\sqrt{t}}^{\infty}(x+w \sqrt{t}-t) e^{-w^{2}-2 x+t} d w\right) \\
&+\frac{1}{2}(x+t) e^{2 x+t}(1+\operatorname{erf}(-x / \sqrt{t}-\sqrt{t})) \\
&+\frac{\sqrt{t}}{2 \sqrt{\pi}}\left(\left.e^{-w^{2}+2 x+t}\right|_{w=-x / \sqrt{t}-\sqrt{t}} ^{-2 x+t}(1-\operatorname{erf}(-x / \sqrt{t}-\sqrt{t}))\right. \\
&\left.-\left.e^{-w^{2}-2 x+t}\right|_{w=-x / \sqrt{t}+\sqrt{t}}\right)
\end{aligned}
$$

(where the last line $=\frac{\sqrt{t}}{\sqrt{\pi}} e^{-x^{2} / t}$).

Deferred, Problem 4A

Problem 4 (5pts). Find the solution $u(x, t)$ to

$$
\begin{array}{ll}
u_{t}=4 u_{x x} & -\infty<x<\infty, t>0, \\
\left.u\right|_{t=0}=e^{-x^{2}} \\
\max |u|<\infty . \tag{4.3}
\end{array}
$$

Calculate the integral.
Hint: For $u_{t}=k u_{x x}$ use $G(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-(x-y)^{2} / 4 k t\right)$. To calculate integral make change of variables and use $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^{2}} d z$.

Solution. Due to hint

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}} g(y) d y=\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{1}{16 t}(x-y)^{2}-y^{2}} d y \\
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\left(\frac{1}{16 t}+1\right) y^{2}+\frac{1}{8 t} x y-\frac{1}{16 t} x^{2}\right] d y \\
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\frac{(16 t+1)}{16 t}\left(y-\frac{x}{16 t+1}\right)^{2}-\frac{x^{2}}{16 t+1}\right] d y
\end{aligned}
$$

and changing variables $y=z+\frac{16 t x}{16 t+1}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{16 \pi t}} \int_{-\infty}^{\infty} \exp \left[-\frac{(16 t+1)}{16 t} z^{2}-\frac{x^{2}}{16 t+1}\right] d z \\
& =\frac{x}{\sqrt{16 \pi t}(16 t+1)} e^{-\frac{x^{2}}{16 t+1}} \int_{-\infty}^{\infty} e^{-\frac{(16 t+1)}{16 t} z^{2}} d z \\
& =\frac{1}{\sqrt{16 \pi t}} e^{-\frac{x^{2}}{16 t+1}} \times \frac{\sqrt{16 t}}{\sqrt{16 t+1}} \int_{-\infty}^{\infty} e^{-w^{2}} \\
& =\frac{1}{\sqrt{16 t+1}} e^{-x^{2} /(16 t+1)}
\end{aligned}
$$

Solutions to Problem 5

Day, Problem 5A

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{align*}
& u_{t t}-c^{2} u_{x x}+a u_{t}=0, \quad 0<x<L \tag{5.1}\\
& \left.u\right|_{x=0}=0 \tag{5.2}\\
& \left.u_{x}\right|_{x=L}=0 \tag{5.3}
\end{align*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x \tag{5.4}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2)-(5.3).

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{t x}\right) d x=\int_{0}^{L}\left(c^{2} u_{t} u_{x x}-a u_{t}^{2}+c^{2} u_{x} u_{t x}\right) d x \\
& =\int_{0}^{L}\left(c^{2}\left(u_{t} u_{x}\right)_{x}-a u_{t}^{2}\right) d x=\left.c^{2} u_{t} u_{x}\right|_{x=0} ^{x=L}-a \int_{0}^{L} u_{t}^{2} d x
\end{aligned}
$$

with the first term equal 0 due to boundary conditions and the second ≤ 0. Answer: (a) $\frac{d E}{d t} \leq 0$.

Day, Problem 5B

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{align*}
& u_{t t}-c^{2} u_{x x}=0, \tag{5.1}\\
& \left.\left(u_{x}+a u_{t}\right)\right|_{x=0}=0, \tag{5.2}\\
& \left.u\right|_{x=L}=0, \tag{5.3}
\end{align*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x \tag{5.4}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2)-(5.3).

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{t x}\right) d x=\int_{0}^{L}\left(c^{2} u_{t} u_{x x}+c^{2} u_{x} u_{t x}\right) d x \\
& =\int_{0}^{L}\left(c^{2}\left(u_{t} u_{x}\right)_{x} d x=\left.a c^{2} u_{t}^{2}\right|_{x=0}\right.
\end{aligned}
$$

due to boundary conditions.
Answer: (c) $\frac{d E}{d t} \geq 0$.

Day, Problem 5C

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{align*}
& u_{t t}-c^{2} u_{x x}+a u_{t}=0, \quad 0<x<L, \tag{5.1}\\
& \left.u\right|_{x=0}=0 \tag{5.2}\\
& \left.u_{x}\right|_{x=L}=0 \tag{5.3}
\end{align*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} e^{2 a t} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x \tag{5.4}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2)-(5.3).

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =e^{2 a t}\left[\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{t x}\right) d x+a \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x\right] \\
& =e^{2 a t}\left[\int_{0}^{L}\left(c^{2} u_{t} u_{x x}-a u_{t}^{2}+c^{2} u_{x} u_{t x}\right) d x+a \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x\right] \\
& =e^{2 a t}\left[\int_{0}^{L}\left(c^{2}\left(u_{t} u_{x}\right)_{x} d x+a \int_{0}^{L} c^{2} u_{x}^{2} d x\right]=\left.c^{2} e^{2 a t} u_{t} u_{x}\right|_{x=0} ^{x=L}+a c^{2} e^{2 a t} \int_{0}^{L} u_{x}^{2} d x\right.
\end{aligned}
$$

with the first term equal 0 due to boundary conditions and the second ≥ 0.
Answer: (a) $\frac{d E}{d t} \leq 0$.

Day, Problem 5D

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0, & x>0, \\
\left.u\right|_{x=0}=0 \tag{5.2}
\end{array}
$$

Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{\infty}\left(t\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)+2 x u_{t} u_{x}\right) d x \tag{5.3}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary condition (5.2). Assume that u and its derivatives decay at infinity.

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{L}\left(t\left(u_{t} u_{t t}+c^{2} u_{x} u_{t x}\right)+\frac{1}{2}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)+x u_{t t} u_{x}+x u_{t} u_{t x}\right) d x \\
& =\int_{0}^{\infty}\left(c^{2} t\left(u_{t} u_{x x}+u_{x} u_{t x}\right)+c^{2} x u_{x x} u_{x}+x u_{t} u_{t x}+\frac{1}{2}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)\right) d x \\
& =\int_{0}^{\infty}\left(c^{2} t\left(u_{t} u_{x}\right)_{x}+\frac{1}{2} x\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)_{x}+\frac{1}{2}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)\right) d x \\
& =\int_{0}^{\infty}\left(c^{2} t u_{t} u_{x}+\frac{1}{2} x\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)\right)_{x} d x=-\left.\left(c^{2} t u_{t} u_{x}+\frac{1}{2} x\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)\right)\right|_{x=0}=0
\end{aligned}
$$

due to boundary conditions.
Answer: (b) $\frac{d E}{d t}=0$.

Night, Problem 5A

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{align*}
& u_{t t}-c^{2} u_{x x}+2 a u^{3}=0, \quad 0<x<L, \tag{5.1}\\
& \left.u\right|_{x=0}=0 \tag{5.2}\\
& \left.u_{x}\right|_{x=L}=0 \tag{5.3}
\end{align*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}+a u^{4}\right) d x \tag{5.4}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2)-(5.3).

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{x} u_{t x}+2 a u_{t} u^{3}\right) d x=\int_{0}^{L}\left(c^{2} u_{t} u_{x x}+c^{2} u_{x} u_{t x}\right) d x \\
& =\int_{0}^{L}\left(c^{2}\left(u_{t} u_{x}\right)_{x}\right) d x=\left.c^{2} u_{t} u_{x}\right|_{x=0} ^{x=L}=0
\end{aligned}
$$

due to boundary conditions.
Answer: (b) $\frac{d E}{d t}=0$.

Night, Problem 5B

Problem 5 (2pts, bonus). Consider nonnegative solutions $(u \geq 0)$

$$
\begin{equation*}
u_{t}-a\left(u u_{x}\right)_{x}=0, \quad-\infty<x<\infty \tag{5.1}
\end{equation*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L} u^{2} d x \tag{5.2}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute u_{t} from equation and integrate by parts with respect to x as needed. Assume that u and its derivatives decay at infinity.

Solution.

$$
\begin{aligned}
& \frac{d E}{d t}=\int_{-\infty}^{\infty}\left(u_{t} u\right) d x=\int_{-\infty}^{\infty}\left(a u\left(u u_{x}\right)_{x}\right) d x \\
& \quad=-\int_{-\infty}^{\infty} a u u_{x}^{2} \leq 0
\end{aligned}
$$

Answer: (a) $\frac{d E}{d t} \leq 0$.

Night, Problem 5C

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{align*}
& u_{t t x x}-c^{2} u=0, \quad 0<x<L, \tag{5.1}\\
& \left.u\right|_{x=0}=0 \tag{5.2}\\
& \left.u_{x}\right|_{x=L}=0, \tag{5.3}
\end{align*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L}\left(u_{x t}^{2}+c^{2} u\right) d x \tag{5.4}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2)-5.3).

Solution.

$$
\left.\left.\frac{d E}{d t}=\int_{0}^{L}\left(u_{t t x} u_{t x}+c^{2} u_{t} u\right)\right) d x=\int_{0}^{L}\left(-u_{t t x x} u_{t}+c^{2} u_{t} u\right)\right) d x=0
$$

where we integrated by parts.
Answer: (b) $\frac{d E}{d t}=0$.

Morning, Problem 5A

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{array}{ll}
u_{t t}+c^{2} u_{x x x x}=0, & 0<x<L, \\
\left.u\right|_{x=0}=u_{x} x=0=\left.u\right|_{x=L}=\left.u_{x}\right|_{x=L} 0 . & \tag{5.2}
\end{array}
$$

Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{\infty}\left(u_{t}^{2}+c^{2} u_{x x}^{2}\right) d x \tag{5.3}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed, taking into account boundary conditions (5.2).

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{0}^{L}\left(u_{t} u_{t t}+c^{2} u_{t x x} u_{x x}\right) d x=c^{2} \int_{0}^{L}\left(-u_{t} u_{x x x x}+c u_{t x x} u_{x x}\right) d x \\
& =c^{2} \int_{0}^{L}\left(u_{t x} u_{x x x}+2 u_{t x x} u_{x x}\right) d x=c^{2} \int_{0}^{L}\left(-u_{t x x} u_{x x}+u_{t x x} u_{x x}\right) d x=0
\end{aligned}
$$

due to boundary conditions (we integrated by parts twice).
Answer: (b) $\frac{d E}{d t}=0$.

Deferred, Problem 5A

Problem 5 (2pts, bonus). Consider the PDE with boundary conditions:

$$
\begin{equation*}
u_{t}+u u_{x}+u_{x x x}=0, \quad-\infty<x<\infty \tag{5.1}
\end{equation*}
$$

where $a>0$ are constant. Consider

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L} u^{2} d x \tag{5.2}
\end{equation*}
$$

and check, what exactly holds:
(a) $\frac{d E}{d t} \leq 0$
(b) $\frac{d E}{d t}=0$
(c) $\frac{d E}{d t} \geq 0$.

Hint: Calculate $\frac{d E}{d t}$, substitute $u_{t t}$ from equation and integrate by parts with respect to x as needed. Assume that u and its derivatives decay at infinity.

Solution.

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{-\infty}^{\infty} 2 u_{t} u d x=-\int_{-\infty}^{\infty} 2\left(u_{x} u^{2}+u u_{x x x}\right) d x \\
& =-\int_{-\infty}^{\infty} 2\left(\frac{1}{3}\left(u^{3}\right)_{x}+u u_{x x x}\right) d x=\int_{-\infty}^{\infty} 2 u_{x x} u_{x} d x=\int_{-\infty}^{\infty}\left(u_{x}^{2}\right)_{x}=0 .
\end{aligned}
$$

Answer: (b) $\frac{d E}{d t}=0$.

