Problem 1 (4pt). Solve by Fourier method

$$
\begin{align*}
& u_{t t}-u_{x x}=0 \quad 0<x<\pi \tag{1.1}\\
& \left.u\right|_{x=0}=0,\left.\quad\left(u_{x}+\alpha u\right)\right|_{x=\pi}=0 \tag{1.2}\\
& \left.u\right|_{t=0}=\sin (x),\left.\quad u_{t}\right|_{t=0}=0 \tag{1.3}
\end{align*}
$$

with $\alpha \in \mathbb{R}$.
Hint: We know that λ_{n} are real but since we do not know the sign of α we do not know if it all $\lambda_{n} \geq 0$; so you must consider the case of some of $\lambda_{n}<0$. Note: Only find equations for eigenvalues.

Solution. Separation of variables leads to

$$
\begin{align*}
& X^{\prime \prime}+\lambda X=0 \tag{1.4}\\
& X(0)=0, \quad\left(X^{\prime}+\alpha X\right)(\pi)=0 \tag{1.5}\\
& T^{\prime \prime}+\lambda T=0 \tag{1.6}
\end{align*}
$$

(a) Consider $\lambda=k^{2}>0$. Then $X=A \cos (k x)+B \sin (k x)$ and plugging to boundary conditions we get $A=0, B(k \cos (k \pi)+\alpha \sin (k \pi))=0$, and to have a nontrivial solution we need $k \cos (k \pi)+\alpha \sin (k \pi)=0$ which for $\alpha \neq 0$ is equivalent to

$$
\begin{equation*}
k=-\alpha \tan (k \pi) . \tag{1.7}
\end{equation*}
$$

Solving graphically

Figure 1: Brown line for $\alpha>0$, red line for $\alpha<0$.
(b) If $\lambda=0$, then $X=A+B x$; plugging into boundary conditions we get $A=0, B(1+\alpha \pi)=0$ and we have nontrivial solutions only for $\alpha=-1 / \pi$.
(c) Let $\lambda=-k^{2}<0$. Then $X=A \cosh (k x)+B \sinh (k x)$; plugging into boundary conditions we get $A=0, B(k \cosh (k \pi)+\alpha \sinh (k \pi))=0$, and we have nontrivial solutions only for $k \cosh (k \pi)+\alpha \sinh (k \pi)=0$, which is equivalent to

$$
\begin{equation*}
k=-\alpha \tanh (k \pi) . \tag{1.8}
\end{equation*}
$$

It has only one solution and only for $\alpha<-1 / \pi$.

Figure 2: Brown line for $\alpha>-1 / \pi$, red line for $\alpha<-1 / \pi$.

Problem 2 (4pt). Solve

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \tag{2.1}\\
& \left.\left(u_{y}+\alpha u\right)\right|_{y=0}=g(x)= \begin{cases}1 & |x|<1, \\
0 & |x|>1\end{cases} \\
& \max |u|<\infty \tag{2.2}
\end{align*}
$$

Hint: Use partial Fourier transform with respect to x. Write solution as a Fourier integral without calculating it.
Find restriction to α, so that there will be no singularities.
Solution. After partial Fourier transform

$$
\begin{align*}
& -k^{2} \hat{u}+\hat{u}_{y y}=0 \quad 0<y<\infty \tag{2.4}\\
& \left.\left(\hat{u}_{y}+\alpha \hat{u}\right)\right|_{y=0}=\hat{g}(k) \tag{2.5}
\end{align*}
$$

One can calculate easily $\hat{g}(k)=\frac{\sin (k)}{\pi k}$.
Solving (2.4) we get $\hat{u}=A(k) e^{-|k| y}+B(k) e^{|k| y}$ and $B(k)=0$ due to and plugging to boundary condition we get $A(k)(-|k|+\alpha)=\frac{\sin (k)}{\pi k} \Longrightarrow$ $A(k)=\frac{\sin (k)}{\pi k(\alpha-|k|)}$,

$$
\begin{equation*}
\hat{u}=\frac{\sin (k)}{\pi k(\alpha-|k|)} e^{-|k| y} . \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x, y)=\int_{-\infty}^{\infty} \frac{\sin (k)}{\pi k(\alpha-|k|)} e^{-|k| y+i k x} d k \tag{2.7}
\end{equation*}
$$

There will be singularity for $|k|=\alpha$ which is excluded by $\alpha<0$.

Problem 3 (4pt). Using Fourier method find eigenvalues and eigenfunctions of Laplacian in the rectangle $\{0<x<a, 0<y<b\}$ with the boundary conditions:

$$
\begin{align*}
& u_{x x}+u_{y y}=-\lambda u \quad 0<x<a, 0<y<b \tag{3.1}\\
& \left.u_{x}\right|_{x=0}=\left.u_{x}\right|_{x=a}=\left.u\right|_{y=0}=\left.u\right|_{y=b}=0 \tag{3.2}
\end{align*}
$$

Solution. Separating variables $u=X(x) Y(y)$ we arrive to

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\lambda=0 \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{align*}
& X^{\prime \prime}+\mu X=0 \tag{3.4}\\
& X^{\prime}(0)=X^{\prime}(a)=0 \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& Y^{\prime \prime}+\nu X=0 \tag{3.6}\\
& Y(0)=Y(b)=0 \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=\mu+\nu \tag{3.8}
\end{equation*}
$$

Next

$$
\begin{array}{lll}
\mu_{m}=\frac{\pi^{2} m^{2}}{a^{2}}, & X_{m}=\cos \left(\frac{\pi m x}{a}\right), & m=0,1,2, \ldots, \\
\nu_{n}=\frac{\pi^{2} n^{2}}{b^{2}}, & Y_{n}=\sin \left(\frac{\pi n y}{b}\right), & n=1,2, \ldots, \tag{3.10}
\end{array}
$$

and finally

$$
\begin{equation*}
\lambda_{m n}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right), \quad u_{m n}=\cos \left(\frac{\pi m x}{a}\right) \sin \left(\frac{\pi n y}{b}\right), \tag{3.11}
\end{equation*}
$$

with $m=0,1,2, \ldots$, and $n=1,2, \ldots$.

Problem $4(4 \mathrm{pt})$. Consider Laplace equation in the disc with a cut

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \quad r<9,0<\theta<2 \pi \tag{4.1}
\end{equation*}
$$

with the Dirichlet boundary conditions as $\theta=0$ and $\theta=2 \pi$

$$
\begin{equation*}
\left.u\right|_{\theta=0}=\left.u\right|_{\theta=2 \pi}=0 \tag{4.2}
\end{equation*}
$$

and the Neumann boundary condition as $r=9$

$$
\begin{equation*}
\left.u_{r}\right|_{r=9}=1 . \tag{4.3}
\end{equation*}
$$

Using separation of variables find solution as a series.
Solution. Separating variables $u(r, \theta)=R(r) \Theta(\theta)$ we get

$$
\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

and therefore both terms are constant:

$$
\begin{align*}
& \Theta^{\prime \prime}+\lambda \Theta=0 \tag{4.4}\\
& \Theta(0)=\Theta(2 \pi)=0 \tag{4.5}
\end{align*}
$$

and therefore $\lambda_{n}=\frac{n^{2}}{4}, \Theta_{n}=\sin \left(\frac{n \theta}{2}\right), n=1,2, \ldots$. Then

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-\frac{n^{2}}{4} R=0 \tag{4.6}
\end{equation*}
$$

and $R=A r^{n / 2}+B r^{-n / 2}$ where we drop the last term as it is singular at $r=0$. So $u_{n}=A_{n} r^{n / 2} \sin \left(\frac{n \theta}{2}\right)$ and

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} A_{n} r^{n / 2} \sin \left(\frac{n \theta}{2}\right) \tag{4.7}
\end{equation*}
$$

Plugging into (4.3) we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} \frac{n}{2} 3^{n-2} \sin \left(\frac{n \theta}{2}\right)=1 \tag{4.8}
\end{equation*}
$$

then

$$
A_{n}=\frac{2}{n} 3^{2-n} \times \frac{1}{\pi} \int_{0}^{2 \pi} \sin \left(\frac{n \theta}{2}\right) d \theta= \begin{cases}0 & n=2 m \tag{4.9}\\ \frac{8 \cdot 3^{1-2 m}}{(2 m+1)^{2} \pi} & n=2 m+1\end{cases}
$$

and

$$
\begin{equation*}
u=\sum_{m=0}^{\infty} \frac{8 \cdot 3^{1-2 m}}{(2 m+1)^{2} \pi} r^{(2 m+1) / 2} \sin \left(\frac{(2 m+1) \theta}{2}\right) . \tag{4.10}
\end{equation*}
$$

Problem 5 (4pt). Find Fourier transforms of the function

$$
\begin{equation*}
f(x)=\cos ^{2}(x) e^{-|x|} \tag{5.1}
\end{equation*}
$$

and write this function as a Fourier integral.
Solution. The simplest:

$$
\begin{aligned}
\hat{f}(k)= & \frac{1}{\pi} \operatorname{Re}\left(\int_{0}^{\infty} \cos ^{2}(x) e^{-|x|-i k x} d x\right)= \\
& \frac{1}{2 \pi} \operatorname{Re}\left(\int_{0}^{\infty}(1+\cos (2 x)) e^{-x-i k x} d x\right)= \\
& \frac{1}{4 \pi} \operatorname{Re}\left(\int_{0}^{\infty}\left(2+e^{2 i x}+e^{-2 i x}\right) e^{-x-i k x} d x\right)= \\
& \frac{1}{4 \pi} \operatorname{Re}\left(\int_{-\infty}^{0}\left(2 e^{-x(1+i k)}+e^{-x(1+k i-2 i)}+e^{-x(1+k i+2 i)}\right) d x\right)= \\
& \frac{1}{4 \pi} \operatorname{Re}\left(\frac{2}{1+i k}+\frac{1}{1+k i-2 i}+\frac{1}{1+k i+2 i}\right)= \\
& \frac{1}{2 \pi}\left(\frac{2}{1+k^{2}}+\frac{1}{1+(k-2)^{2}}+\frac{1}{1+(k+2)^{2}}\right)
\end{aligned}
$$

