Problem 1 (15 pts). Solve by the method of characteristics the BVP for a wave equation

$$
\begin{align*}
& u_{t t}-16 u_{x x}=0, \quad 0<x<\infty, t>0 \tag{1.1}\\
& u(x, 0)=f(x), \tag{1.2}\\
& u_{t}(x, 0)=g(x), \tag{1.3}\\
& \left(u_{x}-u\right)(0, t)=h(t) \tag{1.4}
\end{align*}
$$

with $f(x)=4 e^{-2 x}, \quad g(x)=16 e^{-2 x}$ and $h(t)=e^{-8 t}$. You need to find a continuous solution.

Problem 2 (15 pts). Solve IVP for the heat equation

$$
\begin{align*}
& 2 u_{t}-u_{x x}=0, \tag{2.1}\\
& \left.u\right|_{x=0}=0 \tag{2.2}\\
& \left.u\right|_{t=0}=f(x) \tag{2.3}
\end{align*}
$$

with $f(x)=e^{-x}$.
Solution should be expressed through $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-z^{2}} d z$.
Solution. We can consider Cauchy problem with odd function $f(x)=\sigma(x) e^{-|x|}$, $\sigma(x)= \pm 1$ for $x \gtrless 0$. Thus

$$
\begin{array}{rlr}
u(x, t)= & \\
& \frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} e^{-y} e^{-\frac{1}{2 t}(y-x)^{2}} d y & -\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{0} e^{y} e^{-\frac{1}{2 t}(y-x)^{2}} d y= \\
& \frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} e^{-x+\frac{t}{2}} e^{-\frac{1}{2 t}(y+t-x)^{2}} d y & -\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{0} e^{x+\frac{t}{2}} e^{-\frac{1}{2 t}(y-t-x)^{2}}=
\end{array}
$$

and setting $z:= \pm(y-x \pm t) / \sqrt{2 t}$ in the first and second integrals respectively

$$
\frac{1}{\sqrt{\pi}} e^{-x+\frac{t}{2}} \int_{\frac{t-x}{\sqrt{2 t}}}^{\infty} e^{-z^{2}} d z \quad-\frac{1}{\sqrt{\pi}} e^{x+\frac{t}{2}} \int_{\frac{t+x}{\sqrt{2 t}}}^{\infty} e^{-z^{2}} d z
$$

and finally

$$
u(x, t)=\frac{1}{2}\left(1-\operatorname{erf}\left(\frac{t-x}{\sqrt{2 t}}\right)\right) e^{-x+\frac{t}{2}}-\frac{1}{2}\left(1-\operatorname{erf}\left(\frac{t+x}{\sqrt{2 t}}\right)\right) e^{x+\frac{t}{2}} .
$$

APM346, L0201, Spring 2018, Final Exam, Wednesday, April 11 5/18

Continued

Problem 3 (15 pts). Solve by the method of separation of variables

$$
\begin{align*}
& u_{t t}-u_{x x}+4 u=0, \quad 0<x<\pi, t>0, \tag{3.1}\\
& u(0, t)=u(\pi, t)=0, \tag{3.2}\\
& u(x, 0)=f(x), \tag{3.3}\\
& u_{t}(x, 0)=g(x) \tag{3.4}
\end{align*}
$$

with $f(x)=0$ and $g(x)=x^{2}-\pi x$. Write the answer in terms of Fourier series.

Solution. Separating variables $u(x, t)=X(x) T(t)$ we get

$$
\begin{align*}
& X^{\prime \prime}+\lambda X=0 \tag{3.5}\\
& X(0)=X(\pi)=0 \tag{3.6}\\
& T^{\prime \prime}+(\lambda+4) T=0 \tag{3.7}
\end{align*}
$$

Problem (3.5)-(3.6) has solution

$$
\begin{equation*}
\lambda_{n}=n^{2}, \quad X_{n}=\sin (n x), \quad n=1,2, \ldots \tag{3.8}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
T_{n}=A_{n} \cos \left(\left(n^{2}+4\right)^{1 / 2} t\right)+B_{n}\left(\left(n^{2}+4\right)^{1 / 2} t\right), \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\left(n^{2}+4\right)^{1 / 2} t\right)+B_{n}\left(\left(n^{2}+4\right)^{1 / 2} t\right)\right] \sin (n x) . \tag{3.10}
\end{equation*}
$$

Plugging to (3.3)-(3.4) we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} A_{n} \sin (n x)=0 \\
& \sum_{n=1}^{\infty}\left(n^{2}+4\right)^{1 / 2} B_{n} \sin (n x)=x^{2}-\pi x
\end{aligned}
$$

and therefore $A_{n}=0$,

$$
\left.\begin{array}{rl}
\left(n^{2}+4\right)^{1 / 2} B_{n} & =\frac{2}{\pi} \int_{0}^{\pi}\left(x^{2}-\pi x\right) \sin (n x) d x
\end{array}\right)=\begin{aligned}
& -\frac{2}{\pi n} \int_{0}^{\pi}\left(x^{2}-\pi x\right) d \cos (n x)=\frac{2}{\pi n} \int_{0}^{\pi}(2 x-\pi) \cos (n x) d x= \\
& \frac{2}{\pi n^{2}} \int_{0}^{\pi}(2 x-\pi) d \sin (n x)=-\frac{4}{\pi n^{2}} \int_{0}^{\pi} \sin (n x) d x= \\
& \left.\frac{4}{\pi n^{3}} \cos (n x)\right|_{x=0} ^{x=\pi}=\left\{\begin{array}{cl}
0 & n=2 m \\
-\frac{8}{\pi(2 m+1)^{3}} & n=2 m+1
\end{array}\right.
\end{aligned}
$$

Then
$u(x, t)=-\sum_{m=0}^{\infty} \frac{8}{(2 m+1)^{3} \pi \sqrt{(2 m+1)^{2}+4}} \sin ((2 m+1) x) \sin \left(\sqrt{(2 m+1)^{2}+4} t\right)$.

Problem 4 (15 pts). Consider the Laplace equation in the sector

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { in } \frac{1}{4} \leq x^{2}+y^{2}<4, y>0 \tag{4.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{array}{ll}
u=1 & \text { for } x^{2}+y^{2}=4 \\
u=-1 & \text { for } x^{2}+y^{2}=\frac{1}{4} \\
u=0 & \text { for } y=0 \tag{4.4}
\end{array}
$$

where θ is a polar angle.
(a) Look for solutions u in the form of $u(r, \theta)=R(r) P(\theta)$ (in polar coordinates) and derive a set of ordinary differential equations for R and P. Write the correct boundary conditions for P.
(b) Solve the eigenvalue problem for P and find all eigenvalues.
(c) Solve the differential equation for R.
(d) Find the solution u of (4.1)-(4.3).

Solution. In polar coordinates $\{y=0\}$ is $\theta=0, \pi$.
Separating variables we get

$$
\begin{align*}
\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}+\frac{P^{\prime \prime}}{P}=0 \Longrightarrow & P^{\prime \prime}+\lambda P=0 \tag{4.5}\\
& P(0)=P(\pi)=0 \tag{4.6}\\
& r^{2} R^{\prime \prime}+r R^{\prime}+\lambda R=0 \tag{4.7}
\end{align*}
$$

This problem has solutions $\lambda_{n}=n^{2}, X_{n}=\sin (n \theta), n=1,2, \ldots$.
Then $r^{2} R^{\prime \prime}+r R^{\prime}+n^{2} R=0 \Longrightarrow R_{n}=A_{n} r^{n}+B_{n} r^{-n}$. Then

$$
u=\sum_{n=1}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n}\right) \sin (n \theta)
$$

and using (4.2), (4.3)

$$
\begin{aligned}
& \left.u\right|_{r=2}=\sum_{n=1}^{\infty}\left(2^{n} A_{n}+2^{-n} B_{n}\right) \sin (n \theta)=1, \\
& \left.u\right|_{r=\frac{1}{2}}=\sum_{n=1}^{\infty}\left(2^{-n} A_{n}+2^{n} B_{n}\right) \sin (n \theta)=-1
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(2^{n}+2^{-n}\right)\left(A_{n}+B_{n}\right) \sin (n \theta)=0 \Longrightarrow\left(A_{n}+B_{n}\right)=0 \\
& \sum_{n=1}^{\infty}\left(2^{n}-2^{-n}\right)\left(A_{n}-B_{n}\right) \sin (n \theta)=2 \Longrightarrow\left(2^{n}-2^{-n}\right)\left(A_{n}-B_{n}\right)= \\
& \frac{4}{\pi} \int_{0}^{\pi} \sin (n \theta) d \theta= \begin{cases}\frac{8}{\pi(2 m+1)} & n=2 m+1, \\
0 & n=2 m\end{cases}
\end{aligned}
$$

which implies $A_{2 m}=B_{2 m}=0$ and

$$
A_{2 m+1}=-B_{2 m+1}=\frac{4}{\pi(2 m+1)\left(2^{2 m+1}-2^{-2 m-1}\right)}
$$

Finally

$$
u=\sum_{m=0}^{\infty} \frac{4}{\pi(2 m+1)\left(2^{2 m+1}-2^{-2 m-1}\right)}\left(r^{2 m+1}-r^{-2 m-1}\right) \sin ((2 m+1) \theta) .
$$

Problem 5 (15 pts). Consider Laplace equation in the half-strip

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad y>0,0<x<\frac{\pi}{2} \tag{5.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& u_{x}(0, y)=u_{x}\left(\frac{\pi}{2}, y\right)=0 \tag{5.2}\\
& \left(u_{y}-u\right)(x, 0)=g(x) \tag{5.3}
\end{align*}
$$

with $g(x)=1$ and condition $\max |u|<\infty$.
(a) Write the associated eigenvalue problem.
(b) Find all eigenvalues and corresponding eigenfunctions.
(c) Write the solution in the form of a series expansion.

Solution. Separating variables $u=X(x) Y(y)$ we get

$$
\begin{align*}
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0 \Longrightarrow & X^{\prime \prime}+\lambda X=0 \tag{5.4}\\
& Y^{\prime \prime}-\lambda Y=0 \tag{5.5}\\
& X(0)=X\left(\frac{\pi}{2}\right)=0 \tag{5.6}
\end{align*}
$$

Solving (5.4), (5.6) we have

$$
\lambda_{n}=4 n^{2}, \quad X_{n}=\sin (2 n x) \quad n=1,2,3, \ldots
$$

and then solving (5.5) we get

$$
Y_{n} A_{n} e^{-2 n y}+B_{n} e^{2 n y} \quad n=1,2,3, \ldots
$$

and the last term as growing for $y>0$ we need to drop:

$$
Y_{n}=A_{n} e^{-2 n y} \quad n=1,2,3, \ldots
$$

Then

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} A_{n} e^{-2 n y} \sin (2 n x) . \tag{5.7}
\end{equation*}
$$

Plugging to (5.3) we get

$$
\sum_{n=1}^{\infty} A_{n}(-1-2 n) \sin (2 n x)=1
$$

and

$$
\begin{aligned}
& A_{n}=-\frac{4}{(2 n+1) \pi} \int_{0}^{\frac{\pi}{2}} \sin (2 n x) d x=\left.\frac{2}{n(2 n+1) \pi} \cos (2 n x)\right|_{x=0} ^{x=\frac{\pi}{2}}= \\
& \frac{2}{n(2 n+1) \pi}(\cos (n \pi)-1)= \begin{cases}0 & n=2 m \\
-\frac{4}{(2 m+1)(4 m+3) \pi} & n=2 m+1 \quad m=0,1, \ldots\end{cases}
\end{aligned}
$$

Then

$$
\begin{equation*}
u(x, y)=-\sum_{n=1}^{\infty} \frac{4}{(2 m+1)(4 m+3) \pi} e^{-(4 m+2) y} \cos ((4 m+2) x) \tag{5.8}
\end{equation*}
$$

Problem 6 (15 pts). Solve as $t>0$

$$
\begin{equation*}
u_{t t}-\Delta u=0 \tag{6.1}
\end{equation*}
$$

with initial conditions

$$
u(x, y, z, 0)=0, u_{t}(x, y, z, 0)= \begin{cases}r^{-1} \sin (r) & r:=\sqrt{x^{2}+y^{2}+z^{2}}<\pi \tag{6.2}\\ 0 & r \geq \pi\end{cases}
$$

and solve by a separation of variables.
Hint. Use spherical coordinates, observe that solution must be spherically symmetric: $u=u(r, t)$ (explain why).

Also, use equality

$$
\begin{equation*}
r u_{r r}+2 u_{r}=(r u)_{r r} . \tag{6.3}
\end{equation*}
$$

Solution. Solution is spherically symmetric because the problem is. Then

$$
\begin{equation*}
u_{t t}-\left(u_{r r}+\frac{2}{r} u_{r}\right)=0 \quad r>0, t>0 \tag{6.4}
\end{equation*}
$$

Multiplying by r and using (6.3) we arrive to the first equation below:

$$
\begin{align*}
& v_{t t}-v_{r r}=0 \tag{6.5}\\
& v(0, t)=0, \tag{6.6}\\
& v(r, 0)=0,
\end{align*} \quad v_{t}(r, 0)=h(r)= \begin{cases}\sin (r) & 0<r<\pi, \tag{6.7}\\
0 & r \geq \pi,\end{cases}
$$

Continuing $h(r)$ as and odd function $\tilde{h}(r)=\left\{\begin{array}{ll}\sin (r) & -\pi<r<\pi, \\ 0 & |r| \geq \pi,\end{array}\right.$ and solving Cauchy problem we get

$$
v(r, t)=\frac{1}{2} \int_{r-t}^{r+t} \tilde{h}(z) d z
$$

which is 0 for $r>|t|+\pi$ and for $0<r<|t|-\pi$. Otherwise it is
$v(r, t)=\frac{1}{2} \int_{z_{-}}^{z_{+}} \sin (z) d z=\frac{1}{2}\left(\cos \left(z_{-}\right)-\cos \left(z_{+}\right)\right)=\sin \left(\frac{1}{2}\left(z_{+}+z_{-}\right)\right) \sin \left(\frac{1}{2}\left(z_{+}-z_{-}\right)\right) ;$
$z_{-}=\max (r-t,-\pi), z_{+}=\min (r+t, \pi)$. Then, for $r>0, t>0$, we have

$$
v(r, t)= \begin{cases}0 & r>t+\pi \\ \frac{1}{2}(1-\cos (r-t)) & t-\pi<r<t+\pi, r+t>\pi \\ \sin (r) \sin (t) & r+t<\pi \\ 0 & 0<r<t-\pi\end{cases}
$$

and, finally,

$$
u(r, t)=r^{-1} v(r, t)= \begin{cases}0 & r>t+\pi \\ \frac{1}{2} r^{-1}(1+\cos (r-t)) & t-\pi<r<t+\pi, r+t>\pi \\ r^{-1} \sin (r) \sin (t) & r+t<\pi \\ 0 & 0<r<t-\pi\end{cases}
$$

Problem 7 (15 pts). Solve using (partial) Fourier transform with respect to y

$$
\begin{array}{ll}
\Delta u:=u_{x x}+u_{y y}=0, & x>0, \\
\left.u_{x}\right|_{x=0}=h(y), & \text { as } x \rightarrow+\infty \\
u \rightarrow 0 & \tag{7.3}
\end{array}
$$

with $h(y)=\frac{4 y}{\left(y^{2}+1\right)^{2}}$.
Hint. Fourier transform of $g(y)=\frac{2}{y^{2}+1}$ is $\hat{g}=e^{-|\eta|}$ and $h(y)=-g^{\prime}(y)$.
Solution. Making Fourier transform we get

$$
\begin{array}{ll}
\hat{u}_{x x}-\eta^{2} \hat{u}=0, & x>0, \\
\left.\hat{u}\right|_{x=0}=\hat{h}(\eta), & \text { as } x \rightarrow+\infty \\
\hat{u} \rightarrow 0 & \tag{7.6}
\end{array}
$$

and solving (7.4) we see that $\hat{u}=A(\eta) e^{-|\eta| x}+B(\eta) e^{|\eta| x} ;(7.6)$ implies that $B(\eta)=0$ and (7.5) implies then $A(\eta)=-|\eta|^{-1} \hat{h}(\eta)$.

Due to hint and properties of Fourier transform $\hat{h}(\eta)=-i \eta \hat{g}(\eta)$.
Then $\hat{u}(x, \eta)=i \sigma(\eta) e^{-|\eta|(1+x)}$ with $\sigma(\eta)= \pm 1$ for $\eta \gtrless 0$, and

$$
\begin{aligned}
u(x, y) & =\int_{-\infty}^{\infty} \hat{u}(x, \eta) e^{i \eta y} d \eta=i \int_{-\infty}^{\infty} \sigma(y) e^{-|\eta| x+i \eta y} d \eta \\
& =-i \int_{-\infty}^{0} e^{\eta(1+x+y i)} d \eta+i \int_{0}^{-\infty} e^{-\eta(1+x-y i)} d \eta \\
& =-\frac{i}{1+x+y i}+\frac{i}{1+x-y i}=-\frac{2 y}{(1+x)^{2}+y^{2}}
\end{aligned}
$$

Appendix: Some useful formulas.
 Not exam problems.
 You may detach this page

1. The $2 D$ Laplacian in polar coordinates and $3 D$ Laplacian in spherical coordinates:

$$
\begin{aligned}
& \Delta f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}} \\
& \Delta f=\frac{\partial^{2} f}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial f}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{1}{\rho^{2}} \cot (\phi) \frac{\partial f}{\partial \phi}+\frac{1}{\rho^{2} \sin ^{2}(\phi)} \frac{\partial^{2} f}{\partial \theta^{2}}
\end{aligned}
$$

2. The n-dimensional Stokes theorem

$$
\int_{D} \frac{\partial f}{\partial x_{i}} d x=\int_{\partial D} f \nu_{i} d \sigma
$$

where ν (with components ν_{i}) is the unit normal vector pointing outside.
3. The complex Fourier series of a periodic function $f(x)$ of period $2 l$, defined on the interval $(-l, l)$ is

$$
f(x)=\sum_{n=-\infty}^{+\infty} c_{n} e^{\pi i n x / l}
$$

with the coefficients c_{n} given by the formula

$$
c_{n}=\frac{1}{2 l} \int_{-l}^{l} f(x) e^{-\pi i n x / l} d x
$$

4. The Fourier transform of a function $f(x)$ is defined by

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x
$$

The inverse Fourier transform is

$$
f(x)=\int_{-\infty}^{\infty} e^{i k x} \hat{f}(k) d k
$$

Here some of its properties:

Continued

(a) if $g(x)=f(a x)$, then $\hat{g}(k)=\frac{1}{|a|} \hat{f}\left(\frac{k}{a}\right)$;
(b) $\widehat{f^{\prime}}(k)=i k \hat{f}(k)$;
(c) if $g(x)=x f(x)$ then $\hat{g}(k)=-i \hat{f}^{\prime}(k)$;
(d) if $g(x)=f(x-a)$, then $\hat{g}(k)=e^{-i a k} \hat{f}(k)$;
(e) if $g(x)=f(x) e^{i x b}$, then $\hat{g}(k)=\hat{f}(k-b)$;
(f) if $h=f * g$, then $\hat{h}(k)=2 \pi \hat{f}(k) \hat{g}(k)$;
(g) if $f(x)=e^{-x^{2} / 2}$, then $\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} e^{-k^{2} / 2}$.

