Problem 1 (4pt). Solve by Fourier method

$$
\begin{align*}
& u_{t t}-u_{x x}=0 \quad 0<x<\pi \tag{1.1}\\
& \left.u\right|_{x=0}=-\left.u\right|_{x=\pi},\left.\quad u_{x}\right|_{x=0}=-\left.u_{x}\right|_{x=\pi}, \tag{1.2}\\
& \left.u\right|_{t=0}=1,\left.\quad u_{t}\right|_{t=0}=0 \tag{1.3}
\end{align*}
$$

Hint: $\lambda_{n} \geq 0$. Also remember how solution looks like in the case of double eigenvalues.

Solution. Separation of variables leads to

$$
\begin{align*}
& X^{\prime \prime}+\lambda X=0, \tag{1.4}\\
& X(0)=-X(\pi), \quad X^{\prime}(0)=-X^{\prime}(\pi) \tag{1.5}\\
& T^{\prime \prime}+\lambda T=0 \tag{1.6}
\end{align*}
$$

We know that for this BVP $\lambda \geq 0$, obviously $\lambda=0 \Longrightarrow X=A+B x$ and boundary conditions imply $A=0, B=0$.
Consider $\lambda=k^{2}>0$; then $X=A \cos (k x)+B \sin (k x)$. Then (1.2) implies

$$
\left\{\begin{array} { r l }
{ A } & { = - A \operatorname { c o s } (k \pi) - B \operatorname { s i n } (k \pi) } \\
{ k B } & { = k A \operatorname { s i n } (k \pi) - k B \operatorname { c o s } (k \pi) }
\end{array} \Longrightarrow \left\{\begin{array}{cl}
A(1+\cos (k \pi)) & +B \sin (k \pi)=0 \\
-A \sin (k \pi) & +B(1+\cos (k \pi))=0
\end{array}\right.\right.
$$

with determinant $(1+\cos (k \pi))^{2}+\sin ^{2}(k \pi)$ which is 0 iff $k \pi=(2 n+1) \pi$ with $n=0,1, \ldots$, in which case we have two independent solutions $\cos ((2 n+1) x)$ and $\sin ((2 n+1) x)$.
Meanwhile (1.6) implies $T=A \cos ((2 n+1) t)+B \sin ((2 n+1) t)$ and taking into account Hint

$$
\begin{aligned}
& u(x, t)=\sum_{n=0}^{\infty} {[} \\
&\left(A_{n} \cos ((2 n+1) t)+C_{n} \sin ((2 n+1) t)\right) \cos ((2 n+1) x)+ \\
&\left.\left(B_{n} \cos ((2 n+1) t)+D_{n} \sin ((2 n+1) t)\right) \sin ((2 n+1) x)\right]
\end{aligned}
$$

and initial conditions imply

$$
\begin{aligned}
u(0, t) & =\sum_{n=0}^{\infty} \quad\left[A_{n} \cos ((2 n+1) x)+C_{n} \sin ((2 n+1) x)\right]=1 \\
u_{t}(0, t) & =\sum_{n=0}^{\infty}(2 n+1)\left[B_{n} \cos ((2 n+1) x)+D_{n} \sin ((2 n+1) x)\right]=0
\end{aligned}
$$

and then $B_{n}=D_{n}=0$,

$$
\begin{aligned}
A_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ((2 n+1) x) d x=0 \\
C_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \cos ((2 n+1) x) d x=\frac{4}{(2 n+1) \pi}
\end{aligned}
$$

and

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} \frac{4}{(2 n+1) \pi} \cos ((2 n+1) t) \sin ((2 n+1) x) \tag{1.7}
\end{equation*}
$$

Problem 2 (4pt). Solve

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \tag{2.1}\\
& \left.u\right|_{y=0}=g(x)= \begin{cases}1 & |x|<1, \\
0 & |x|>1\end{cases} \tag{2.2}\\
& \max |u|<\infty . \tag{2.3}
\end{align*}
$$

Hint: Use partial Fourier transform with respect to x. Write solution as a Fourier integral without calculating it.

Solution. After partial Fourier transform

$$
\begin{align*}
& -k^{2} \hat{u}+\hat{u}_{y y}=0 \quad 0<y<\infty, \tag{2.4}\\
& \left.\hat{u}\right|_{y=0}=\hat{g}(k) . \tag{2.5}
\end{align*}
$$

One can calculate easily $\hat{g}(k)=\frac{\sin (k)}{\pi k}$.
Solving (2.5) we get $\hat{u}=A(k) e^{-|k| y}+B(k) e^{|k| y}$ and $B(k)=0$ due to (2.3) and $A(k)=\frac{\sin (k)}{\pi k}$,

$$
\begin{equation*}
\hat{u}=\frac{\sin (k)}{\pi k} e^{-|k| y} . \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x, y)=\int_{-\infty}^{\infty} \frac{\sin (k)}{\pi k} e^{-|k| y+i k x} d k=2 \int_{0}^{\infty} \frac{\sin (k)}{\pi k} e^{-k y} \cos (k x) d k \tag{2.7}
\end{equation*}
$$

Problem 3 (4pt). Using Fourier method find eigenvalues and eigenfunctions of Laplacian in the rectangle $\{0<x<a, 0<y<b\}$ with Neumann boundary conditions:

$$
\begin{align*}
& u_{x x}+u_{y y}=-\lambda u \quad 0<x<a, 0<y<b \tag{3.1}\\
& \left.u_{x}\right|_{x=0}=\left.u_{x}\right|_{x=a}=\left.u_{y}\right|_{y=0}=\left.u_{y}\right|_{y=b}=0 \tag{3.2}
\end{align*}
$$

Solution. Separating variables $u=X(x) Y(y)$ we arrive to

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\lambda=0 \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{align*}
& X^{\prime \prime}+\mu X=0 \tag{3.4}\\
& X^{\prime}(0)=X^{\prime}(a)=0 \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& Y^{\prime \prime}+\nu X=0 \tag{3.6}\\
& Y^{\prime}(0)=Y^{\prime}(b)=0 \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=\mu+\nu \tag{3.8}
\end{equation*}
$$

Next

$$
\begin{array}{lll}
\mu_{m}=\frac{\pi^{2} m^{2}}{a^{2}}, & X_{m}=\cos \left(\frac{\pi m x}{a}\right), & m=1,2, \ldots, \\
\nu_{n}=\frac{\pi^{2} n^{2}}{b^{2}}, & Y_{n}=\cos \left(\frac{\pi n y}{b}\right), & n=1,2, \ldots \tag{3.10}
\end{array}
$$

and finally

$$
\begin{equation*}
\lambda_{m n}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right), \quad u_{m n}=\cos \left(\frac{\pi m x}{a}\right) \cos \left(\frac{\pi n y}{b}\right), \quad m, n=0,1,2 \ldots \tag{3.11}
\end{equation*}
$$

Problem 4 (4pt). Consider Laplace equation in the sector

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \quad r<8,0<\theta<\frac{3}{2} \pi \tag{4.1}
\end{equation*}
$$

with the Dirichlet boundary conditions as $\theta=0$ and $\theta=\frac{3}{2} \pi$

$$
\begin{equation*}
\left.u\right|_{\theta=0}=\left.u\right|_{\theta=\frac{3}{2} \pi}=0 \tag{4.2}
\end{equation*}
$$

and the Dirichlet boundary condition as $r=8$

$$
\begin{equation*}
\left.u\right|_{r=8}=1 . \tag{4.3}
\end{equation*}
$$

Using separation of variables find solution as a series.
Solution. Separating variables $u(r, \theta)=R(r) \Theta(\theta)$ we get

$$
\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

and therefore both terms are constant:

$$
\begin{align*}
& \Theta^{\prime \prime}+\lambda \Theta=0, \tag{4.4}\\
& \Theta(0)=\Theta\left(\frac{3}{2} \pi\right)=0 \tag{4.5}
\end{align*}
$$

and therefore $\lambda_{n}=\frac{4 n^{2}}{9}, \Theta_{n}=\sin \left(\frac{2 n \theta}{3}\right), n=1,2, \ldots$ Then

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-\frac{4 n^{2}}{9} R=0 \tag{4.6}
\end{equation*}
$$

and $R=A r^{2 n / 3}+B r^{-2 n / 3}$ where we drop the last term as it is singular at $r=0$. So $u_{n}=A_{n} r^{2 n / 3} \sin \left(\frac{2 n}{3} \theta\right)$ and

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} A_{n} r^{2 n / 3} \sin \left(\frac{2 n \theta}{3}\right) \tag{4.7}
\end{equation*}
$$

Plugging into (4.3) we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} 2^{2 n} \sin \left(\frac{2 n \theta}{3}\right)=1 \tag{4.8}
\end{equation*}
$$

then

$$
A_{n}=2^{-2 n} \frac{4}{3 \pi} \int_{0}^{3 \pi / 2} \sin \left(\frac{2 n \theta}{3}\right) d \theta= \begin{cases}0 & n=2 m \tag{4.9}\\ \frac{2^{2-2 n}}{(2 m+1) \pi} & n=2 m+1\end{cases}
$$

and

$$
\begin{equation*}
u=\sum_{m=0}^{\infty} \frac{2^{2-4 m}}{(2 m+1)} r^{2(2 m+1) / 3} \sin \left(\frac{2}{3}(2 m+1) \theta\right) \tag{4.10}
\end{equation*}
$$

Problem 5 (4pt). Find Fourier transforms of the functions

$$
\begin{equation*}
f_{ \pm}(x)=e^{-\varepsilon|x|} \theta(\pm x) \tag{5.1}
\end{equation*}
$$

and write these function as a Fourier integrals, where θ is a Heaviside function: $\theta(t)=1$ for $t>0$ and $\theta(t)=0$ for $t<0$.

Bonus (1pt). Write Fourier transforms of the functions $g(x)=f_{+}(x)+f_{-}(x)$ and $h(x)=f_{+}(x)-f_{-}(x)$.

Solution. The simplest:

$$
\begin{aligned}
\hat{f}_{+}(k)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x= \\
& \frac{1}{2 \pi} \int_{0}^{\infty} e^{-i k x-\varepsilon x} d x= \\
& \frac{1}{2 \pi(\varepsilon+i k)}=\frac{1}{2 \pi i(k-i \varepsilon)} .
\end{aligned}
$$

Then since $f_{-}(x)=f_{+}(-x)$ we conclude that $\hat{f}_{-}(k)=\hat{f}_{+}(-k)=-\frac{1}{2 \pi i(k+i \varepsilon)}$. Conversely

$$
f_{ \pm}(x)= \pm \int_{-\infty}^{\infty} \frac{1}{2 \pi i(k \mp i \varepsilon)} e^{i k x} d k
$$

Bonus Solution.

$$
\begin{align*}
& \hat{g}(k)=\hat{f}_{+}(k)+\hat{f}_{-}(k)=\frac{\varepsilon}{\pi\left(k^{2}+\varepsilon^{2}\right)}, \tag{5.2}\\
& \hat{h}(k)=\hat{f}_{+}(k)-\hat{f}_{-}(k)=\frac{k}{i \pi\left(k^{2}+\varepsilon^{2}\right)} . \tag{5.3}
\end{align*}
$$

